K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2016

~~~~~e)~~~~~

\(\left(x^2+x+1\right)\left(x^2+x+2\right)-12\)

Đặt \(x^2+x+1=v\)

Ta có: \(v.\left(v+1\right)-12\)

\(=v^2+v-12\)

\(=v^2-3v+4v-12\)

\(=v\left(v-3\right)+4\left(v-3\right)\)

\(=\left(v-3\right)\left(v+4\right)\)

\(=\left(x^2+x+1-3\right)\left(x^2+x+1+4\right)\)

\(=\left(x^2+x-2\right)\left(x^2+x+5\right)\)

~~~~~g)~~~~~

\(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-24\)

\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)-24\)(nhân cái đầu vs cái cuối, hai cái giữa nhân vs nhau)

Đặt \(x^2+5x+5=t\)

Ta có: \(\left(t-1\right)\left(t+1\right)-24\)

\(=t^2-1-24\)

\(=t^2-25\)

\(=\left(t-5\right)\left(t+5\right)\)

\(=\left(x^2+5x+5-5\right)\left(x^2+5x+5+5\right)\)

\(=\left(x^2+5x\right)\left(x^2+5x+10\right)\)

~~~~~h)~~~~~

\(\left(x^2+x+1\right)\left(x^2+3x+1\right)+x^2\)

Đặt \(x^2+2x+1=n\)

Ta có: \(\left(n-x\right)\left(n+x\right)+x^2\)

\(=n^2-x^2+x^2\)

\(=n^2\)

\(=\left(x^2+2x+1\right)^2\)

\(=\left(\left(x+1\right)^2\right)^2\)

\(=\left(x+1\right)^4\)

~~~~~~~~~~~~~~~~~~~~

(Mong là mình làm đúng, chúc you học tốt nha, tíck cho mìk với nhé!)

trong sách 

nâng cao và 

phát triển toán 8

kìa

26 tháng 7 2018

Thì tui mới phải xin cách làm 

24 tháng 3 2020

a, - Đặt \(x^2+x=a\) ta được phương trình :\(a^2+4a-12=0\)

=> \(a^2-2a+6a-12=0\)

=> \(a\left(a-2\right)+6\left(a-2\right)=0\)

=> \(\left(a+6\right)\left(a-2\right)=0\)

=> \(\left[{}\begin{matrix}a+6=0\\a-2=0\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}a=2\\a=-6\end{matrix}\right.\)

- Thay lại \(x^2+x=a\) vào phương trình trên ta được :\(\left[{}\begin{matrix}x^2+x=2\\x^2+x=-6\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x^2+x-2=0\\x^2+x+6=0\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}\left(x+\frac{1}{2}\right)^2-\frac{9}{4}=0\\\left(x+\frac{1}{2}\right)^2+\frac{23}{4}=0\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}\left(x+\frac{1}{2}\right)^2=\frac{9}{4}\\\left(x+\frac{1}{2}\right)^2=-\frac{23}{4}\left(VL\right)\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x+\frac{1}{2}=\sqrt{\frac{9}{4}}\\x+\frac{1}{2}=-\sqrt{\frac{9}{4}}\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x=\sqrt{\frac{9}{4}}-\frac{1}{2}=1\\x=-\sqrt{\frac{9}{4}}-\frac{1}{2}=-2\end{matrix}\right.\)

Vậy phương trình trên có nghiệm là \(S=\left\{1,-2\right\}\)

b, Đặt \(x^2+2x+3=a\) -> làm tương tự câu a .

c, Ta có : \(\left(x-2\right)\left(x+2\right)\left(x^2-10\right)=72\)

=> \(\left(x^2-4\right)\left(x^2-10\right)=72\)

- Đặt \(x^2-4=a\)\(x^2-10=a-6\) ta được phương trình :

\(a\left(a-6\right)=72\)

=> \(a^2-6a-72=0\)

=> \(a^2+6a-12a-72=0\)

=> \(a\left(a+6\right)-12\left(a+6\right)=0\)

=> \(\left(a+6\right)\left(a-12\right)=0\)

=> \(\left[{}\begin{matrix}a+6=0\\a-12=0\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}a=-6\\a=12\end{matrix}\right.\)

- Thay lại \(x^2-4=a\) vào phương trình trên ta được :\(\left[{}\begin{matrix}x^2-4=-6\\x^2-4=12\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x^2=-2\left(VL\right)\\x^2=16\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x=\sqrt{16}=4\\x=-\sqrt{16}=-4\end{matrix}\right.\)

Vậy phương trình trên có nghiệm là \(S=\left\{4,-4\right\}\)

d, Ta có : \(x\left(x+1\right)\left(x^2+x+1\right)=42\)

=> \(\left(x^2+x\right)\left(x^2+x+1\right)=42\)

- Đặt \(x^2+x=a\) ta được phương trình : \(a\left(a+1\right)=42\)

=> \(a^2+a-42=0\)

=> \(a^2+7a-6a-42=0\)

=> \(a\left(a+7\right)-6\left(a+7\right)=0\)

=> \(\left(a-6\right)\left(a+7\right)=0\)

=> \(\left[{}\begin{matrix}a=6\\a=-7\end{matrix}\right.\)

- Thay \(a=x^2+x\) vào phương trình ta được : \(\left[{}\begin{matrix}x^2+x=6\\x^2+x=-7\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x^2+x-6=0\\x^2+x+7=0\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}\left(x+\frac{1}{2}\right)^2-\frac{25}{4}=0\\\left(x+\frac{1}{2}\right)^2+\frac{27}{4}=0\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}\left(x+\frac{1}{2}\right)^2=\frac{25}{4}\\\left(x+\frac{1}{2}\right)^2=-\frac{27}{4}\left(VL\right)\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x+\frac{1}{2}=\sqrt{\frac{25}{4}}\\x+\frac{1}{2}=-\sqrt{\frac{25}{4}}\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x=\sqrt{\frac{25}{4}}-\frac{1}{2}=2\\x=-\sqrt{\frac{25}{4}}-\frac{1}{2}=-3\end{matrix}\right.\)

Vậy phương trình trên có tập nghiệm là \(S=\left\{2;-3\right\}\)

11 tháng 9 2018

(x + 1)(x + 2)(x + 3)(x + 4) - 24

= x4 + 10x3 + 35x2 + 50x + 24 - 24

= x4 + 10x3 + 35x2 + 50x

11 tháng 9 2018

( x + 1 ). ( x + 2 ) ( x + 3 ) ( x + 4 ) - 24

= ( x2 + 5x + 4 ) .( x2 + 5x + 6 ) - 24

Đặt t = x2 + 5x + 5 

=> ( t - 1 ). ( t + 1 ) - 24

= t2 - 1 - 24 

= t2 - 25

= ( t - 5 ). ( t + 5 )

= ( x2 + 5x + 5 - 5 ) . ( x2 + 5x + 5 + 5 )

= ( x2 + 5x ) . ( x2 + 5x + 10 )

= x. ( x + 5 ) . ( x2 + 5x + 10 )

31 tháng 10 2016

Bạn ơi , mình cho bạn ví dụ và hướng dẫn cách làm nha 

f(x)=3x3 – 7x2 + 17x–5f(x)

Hướng dẫn:
±1,±5±1,±5 không là nghiệm của f(x)f(x), như vậy f(x)f(x) không  có nghiệm nguyên. Nên f(x)f(x) nếu có nghiệm thì là nghiệm hữu tỉ
Ta nhận thấy x=x= 1313 là nghiệm của f(x)f(x) do đó f(x)f(x) có một nhân tử là  3x–13x–1. Nên
f(x)= 3x– 7x2 + 17x – 5 = 3x3− x2− 6x2 + 2x + 15x − 5f(x)

= 3x3 – 7x2 + 17x – 5 = 3x3 − x2 − 6x2 + 2x + 15x − 5

= (3x3−x2 ) − ( 6x2 −2x ) + (15x−5) = (3x3 − x2) − (6x2 − 2x) + (15x−5)
= x2 ( 3x−1 )− 2x(3x−1) + 5(3x−1) = (3x − 1)(x2 − 2x + 5 )
Vì x2 − 2x + 5 = (x2 − 2x + 1) + 4 = (x−1)2 + 4>0x2 − 2x + 5= (x2 − 2x + 1) + 4= (x−1)2 + 4>0 với mọi xx nên không phân tích được thành nhân tử nữa
 

31 tháng 10 2016

ình muốn giúp lắm nhưng mình......chưa học.mình mới học lớp 7

29 tháng 10 2018

a. (x2 + x)2 + 4.(x2 + x) - 12 (*)

Đặt x2 + x = a, ta có:

(*) = a2 + 4a - 12

= (a2 + 4a + 4) - 16

= (a + 2)2 - 16

= (a + 6)(a - 2)

= (x2 + x + 6)(x2 + x - 2)

b. (x2 + x+ 1)(x2 + x + 2) - 12 (**)

Đặt x2 + x + 1 = t, ta có:

(**) = t.(t + 1) - 12

= t2 + t - 12

= t2 + 4t - 3t - 12

= t(t + 4) - 3(t + 4)

= (t - 3)(t + 4)

= (x2 + x - 2)(x2 + x + 5)

c. (x + 1)(x + 2)(x + 3)(x + 4) - 24 (***)

= (x2 + 5x + 4)(x2 + 5x + 6) - 24

Đặt x2 + 5x + 4 = k, ta có:

(***) = k.(k + 2) - 24

= k2 + 2x - 24

= k2 + 6k - 4k - 24

= k(k + 6) - 4(k + 6)

= (k - 4)(k + 6)

= (x2 + 5x)(x2 + 5x + 10)

3 tháng 2 2022

f. 5 – (x – 6) = 4(3 – 2x)

<=>5-x+6=12-8x

<=>7x=1

<=>x=\(\dfrac{1}{7}\)

g. 7 – (2x + 4) = – (x + 4)

<=>7-2x-4=-x-4

<=>x=7

h. 2x(x+2)\(^2\)−8x\(^2\)=2(x−2)(x\(^2\)+2x+4)

<=>\(2x\left(x^2+4x+4\right)-8x^2=2\left(x^3-8\right)\)

<=>\(2x^3+8x^2+8x-8x^2=2\left(x^3-8\right)\)

<=>\(2x^3+8x=2x^3-16\)

<=>\(8x=-16\)

<=>\(x=-2\)

i. (x−2\(^3\))+(3x−1)(3x+1)=(x+1)\(^3\)

<=>\(x-8+9x^2-1=x^3+3x^2+3x+1\)

<=>\(6x^2-2x-10=0\)

<=>\(3x^2-x-5=0\)

<=>\(\left[{}\begin{matrix}x=\dfrac{1+\sqrt{61}}{6}\\x=\dfrac{1-\sqrt{61}}{6}\end{matrix}\right.\)

k. (x + 1)(2x – 3) = (2x – 1)(x + 5)

<=>\(2x^2-x-3=2x^2+9x-5\)

<=>10x=2

<=>\(x=\dfrac{1}{5}\)

3 tháng 2 2022

f. 5 – (x – 6) = 4(3 – 2x)

<=>5-x+6=12-8x

<=>7x=1

<=>x=\(\dfrac{1}{7}\)

g. 7 – (2x + 4) = – (x + 4)

<=>7-2x-4=-x-4

<=>x=7

h. \(2x\left(x+2\right)^2-8x^2=2\left(x-2\right)\left(x^2+2x+4\right)\)

<=>\(2x\left(x^2+4x+4\right)-8x^2=2\left(x^3-8\right)\)

<=>\(2x^3+8x^2+8x-8x^2=2x^3-16\)

<=>\(8x=-16\)

<=>x=-2

i.\(\left(x-2\right)^3+\left(3x-1\right)\left(3x+1\right)=\left(x+1\right)^3\)

<=>\(x^3-6x^2+12x+8+9x^2-1=x^3+3x^2+3x+1\)

<=>\(9x+6=0\)

<=>x=\(\dfrac{-2}{3}\)

k. (x + 1)(2x – 3) = (2x – 1)(x + 5)

<=>\(2x^2-x-3=2x^2+9x-5\)

<=>10x=2

<=>x=\(\dfrac{1}{5}\)

NV
14 tháng 3 2020

a/ Đặt \(x^2+2x+1=\left(x+1\right)^2=t\ge0\)

\(\Rightarrow\left(t+2\right)t=3\Leftrightarrow t^2+2t-3=0\Rightarrow\left[{}\begin{matrix}t=1\\t=-3\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\left(x+1\right)^2=1\Rightarrow\left[{}\begin{matrix}x+1=1\\x+1=-1\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)

b/ \(\Leftrightarrow\left(x^2-x\right)\left(x^2-x+1\right)-6=0\)

Đặt \(x^2-x=t\Rightarrow t\left(t+1\right)-6=0\Rightarrow t^2+t-6=0\)

\(\Rightarrow\left[{}\begin{matrix}t=-3\\t=2\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x^2-x=-3\\x^2-x=2\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x^2-x+3=0\left(vn\right)\\x^2-x-2=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=-1\\x=2\end{matrix}\right.\)

4 tháng 11 2016

b)(x2+x+1)(x2+x+2)-12

Đặt t=x2+x+1

t(t+1)-12=t2+t-12

=(t-3)(t+4)=(x2+x+1-3)(x2+x+1+4)

=(x2+x-2)(x2+x+5)

=(x-1)(x+2)(x2+x+5)

c)(x2+8x+7)(x2+8x+15)+15

Đặt t=x2+8x+7 

t(t+8)+15=t2+8t+15

=(t+3)(t+5)

=(x2+8x+7+3)(x2+8x+7+15)

=(x2+8x+10)(x2+8x+22)

d)(x+2)(x+3)(x+4)(x+5)-24

=(x2+7x+10)(x2+7x+12)-24

Đặt t=x2+7x+10

t(t+2)-24=(t-4)(t+6)

=(x2+7x+10-4)(x2+7x+10+6)

=(x2+7x+6)(x2+7x+16)

=(x+1)(x+6)(x2+7x+16)

4 tháng 11 2016

a/ Đặt x2 + 4x + 8 = a

Thì đa thức ban đầu thành

a2 + 3ax + 2x= (a2 + 2ax + x2) + (ax + x2)

= (a + x)2 + x(a + x) = (a + x)(a + 2x)