câu 4:chỉ ra đơn thức trong các biểu thức sau
A)-xy B)3-2xy C)5(x-y) D)x+1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a: \(\left(\dfrac{1}{3}x+2\right)\left(3x-6\right)\)
\(=x^2-3x+6x-12\)
\(=x^2+3x-12\)
b: \(\left(x+3\right)\left(x^2-3x+9\right)=x^3+27\)
c: \(\left(-2xy+3\right)\left(xy+1\right)\)
\(=-2x^2y^2-2xy+3xy+3\)
\(=-2x^2y^2+xy+3\)
d: \(x\left(xy-1\right)\left(xy+1\right)\)
\(=x\left(x^2y^2-1\right)\)
\(=x^3y^2-x\)
Bài 2:
a: Ta có: \(M=\left(3x+2\right)\left(9x^2-6x+4\right)\)
\(=27x^3+8\)
\(=27\cdot\dfrac{1}{27}+8=9\)
b: Ta có: \(N=\left(5x-2y\right)\left(25x^2+10xy+4y^2\right)\)
\(=125x^3-8y^3\)
\(=125\cdot\dfrac{1}{125}-8\cdot\dfrac{1}{8}\)
=0
Các đơn thức là:
\(-3;2z;-10x^2yz;\dfrac{4}{xy}\)
Các đa thức là:
\(\dfrac{1}{3}xy+1;5x-\dfrac{z}{2};1+\dfrac{1}{y}\)
\(1,\\ a,=x^2+2xy+y^2\\ b,=x^2-4xy+4y^2\\ c,=x^2y^4-1\\ d,=\left[\left(x-y\right)\left(x+y\right)\right]^2=\left(x^2-y^2\right)^2=x^4-2x^2y^2+y^4\\ 2,\\ a,=\left(x+2\right)^2\\ b,=\left(3x-2\right)^2\\ c,=\left(\dfrac{x}{2}+1\right)^2\\ d,=\left(x+y-2\right)^2\)
a: =-2x^3y^4z^5
Hệ số: -2
Bậc: 12
Biến: x^3;y^4;z^5
b; =-18x^2y^4z
hệ số: -18
Bậc: 7
biến: x^2;y^4;z
c: =-36x^2y^4
hệ số: -36
bậc: 6
Biến; x^2;y^4
d: =5x^3y^3z^3
hệ số: 5
Bậc: 9
biến: x^3;y^3;z^3
a) \(-xy\cdot2x^3y^4\cdot-\dfrac{5}{4}x^2y^3\)
\(=\left(-1\cdot2\cdot-\dfrac{5}{4}\right)\cdot\left(x\cdot x^3\cdot x^2\right)\cdot\left(y\cdot y^4\cdot y^3\right)\)
\(=\dfrac{5}{2}x^6y^8\)
Bậc là: \(6+8=14\)
Hệ số: \(\dfrac{5}{2}\)
Biến: \(x^6y^8\)
b) \(5xyz\cdot4x^3y^2\cdot-2x^5y\)
\(=\left(5\cdot4\cdot-2\right)\cdot\left(x\cdot x^3\cdot x^5\right)\cdot\left(y\cdot y^2\cdot y\right)\cdot z\)
\(=-40x^9y^4z\)
Bậc là: \(9+4=13\)
Hệ số: \(-40\)
Biến: \(x^9y^4z\)
c) \(-2xy^5\cdot-x^2y^2\cdot7x^2y\)
\(=\left(-2\cdot-1\cdot7\right)\cdot\left(x\cdot x^2\cdot x^2\right)\cdot\left(y^5\cdot y^2\cdot y\right)\)
\(=14x^6y^8\)
Bậc là: \(6+8=14\)
Hệ số: \(14\)
Biến: \(x^6y^8\)
a) Các đơn thức là: \(\dfrac{4}{5}x;\left( {\sqrt 2 - 1} \right)xy; - 3x{y^2};\dfrac{1}{2}{x^2}y;\dfrac{{ - 3}}{2}{x^2}y.\)
b) +Xét đơn thức \(\dfrac{4}{5}x\) có hệ số là \(\dfrac{4}{5}\), phần biến là \(x\).
+Xét đơn thức \(\left( {\sqrt 2 - 1} \right)xy\) có hệ số là \(\sqrt 2 - 1\), phần biến \(xy\).
+Xét đơn thức \( - 3x{y^2}\) có hệ số là \( - 3\), phần biến là \(x{y^2}\).
+Xét đơn thức \(\dfrac{1}{2}{x^2}y\) có hệ số là \(\dfrac{1}{2}\), phần biến \({x^2}y\).
+Xét đơn thức \( - \dfrac{3}{2}{x^2}y\) có hệ số là \( - \dfrac{3}{2}\), phần biến \({x^2}y\).
c) Tổng các đơn thức trên là đa thức:
\(\begin{array}{l}\dfrac{4}{5}x + \left( {\sqrt 2 - 1} \right)xy + \left( { - 3x{y^2}} \right) + \dfrac{1}{2}{x^2}y + \dfrac{{ - 3}}{2}{x^2}y\\ = \dfrac{4}{5}x + \left( {\sqrt 2 - 1} \right)xy - 3x{y^2} + \left( {\dfrac{1}{2} + \dfrac{{ - 3}}{2}} \right){x^2}y\\ = \dfrac{4}{5}x + \left( {\sqrt 2 - 1} \right)xy - 3x{y^2} - {x^2}y\end{array}\)
Bậc của đa thức trên là 1 + 2 = 3.
A
A