K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 7 2016

không có kết quả

8 tháng 4 2017

ko có kết quả

1 tháng 10 2016

p=1 vì p2+11=12 có 6 ước =1,2,3,4,6,12haha

các bạn ơi giúp mình với mình cần gấp mai nộp rồi

15 tháng 4 2019

Gọi các ước nguyên tố của số N là p ; q ; r và p < q < r

\(\Rightarrow p=2;q+r=18\Rightarrow\orbr{\begin{cases}q=5;r=13\\q=7;r=11\end{cases}\Rightarrow\orbr{\begin{cases}N=2^a.5^b.13^c\\N=2^a.7^b.11^c\end{cases}}}\)

 Với a ; b; c \(\in\)N  và  \(\left(a+1\right)\left(b+1\right)\left(c+1\right)=12\Rightarrow12=2.2.3\)

Do đó N có thể là \(2^2.5.13;2.5^2.13;2.5.13^2;2^2.7.11;2.7^2.11;2.7.11^2\)

N nhỏ nhất nên \(N=2^2.5.13=260\)

AH
Akai Haruma
Giáo viên
30 tháng 7 2021

Lời giải:

Nếu $p=2$ thì $p^2+11=15$ chỉ có 4 ước nguyên dương

Nếu $p=3$ thì $p^2+11=20$ có đúng 6 ước nguyên dương

Nếu $p>3$ thì $p$ lẻ

$\Rightarrow p^2\equiv 1\pmod 4$

$\Rightarrow p^2+11\equiv 12\equiv 0\pmod 4(1)$

$p^2\equiv 1\pmod 3$

$\Rightarrow p^2+11\equiv 12\equiv 0\pmod 3(2)$

Từ $(1);(2)$ suy ra $p^2+11\vdots 12$

Đặt $p^2+11=12k$ với $k$ là số tự nhiên lớn hơn $1$

Lúc này, $p^2+11$ có ít nhất các ước nguyên dương sau: $1,2,3,4,6,12,k, 2k, 3k,4k, 6k, 12k$ (nhiều hơn 6 ước nguyên dương rồi)

Vậy $p=3$

26 tháng 6 2018

Gọi các số nguyên tố đó là ab 
Có ab chia hết cho a
Mà số nguyên tố chỉ có 2 ước là 1 và chính nó
ab có 2 chữ số nên luôn khác a 
=> a = 1
Vậy đó là các số nguyên số có hàng chục là 1 ( 11 ; 13 ; 17 ; 19 )

1 tháng 7 2018

Gọi các số nguyên tố đó là ab 
Có ab chia hết cho a
Mà số nguyên tố chỉ có 2 ước là 1 và chính nó
ab có 2 chữ số nên luôn khác a 
=> a = 1
Vậy đó là các số nguyên số có hàng chục là 1 ( 11 ; 13 ; 17 ; 19 )