tìm tất cả các số nguyên tố p sao cho p^2+11 có đúng 6 ước kể cả 1 và chính nó
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
các bạn ơi giúp mình với mình cần gấp mai nộp rồi
Gọi các ước nguyên tố của số N là p ; q ; r và p < q < r
\(\Rightarrow p=2;q+r=18\Rightarrow\orbr{\begin{cases}q=5;r=13\\q=7;r=11\end{cases}\Rightarrow\orbr{\begin{cases}N=2^a.5^b.13^c\\N=2^a.7^b.11^c\end{cases}}}\)
Với a ; b; c \(\in\)N và \(\left(a+1\right)\left(b+1\right)\left(c+1\right)=12\Rightarrow12=2.2.3\)
Do đó N có thể là \(2^2.5.13;2.5^2.13;2.5.13^2;2^2.7.11;2.7^2.11;2.7.11^2\)
N nhỏ nhất nên \(N=2^2.5.13=260\)
Lời giải:
Nếu $p=2$ thì $p^2+11=15$ chỉ có 4 ước nguyên dương
Nếu $p=3$ thì $p^2+11=20$ có đúng 6 ước nguyên dương
Nếu $p>3$ thì $p$ lẻ
$\Rightarrow p^2\equiv 1\pmod 4$
$\Rightarrow p^2+11\equiv 12\equiv 0\pmod 4(1)$
$p^2\equiv 1\pmod 3$
$\Rightarrow p^2+11\equiv 12\equiv 0\pmod 3(2)$
Từ $(1);(2)$ suy ra $p^2+11\vdots 12$
Đặt $p^2+11=12k$ với $k$ là số tự nhiên lớn hơn $1$
Lúc này, $p^2+11$ có ít nhất các ước nguyên dương sau: $1,2,3,4,6,12,k, 2k, 3k,4k, 6k, 12k$ (nhiều hơn 6 ước nguyên dương rồi)
Vậy $p=3$
Gọi các số nguyên tố đó là ab
Có ab chia hết cho a
Mà số nguyên tố chỉ có 2 ước là 1 và chính nó
ab có 2 chữ số nên luôn khác a
=> a = 1
Vậy đó là các số nguyên số có hàng chục là 1 ( 11 ; 13 ; 17 ; 19 )
Gọi các số nguyên tố đó là ab
Có ab chia hết cho a
Mà số nguyên tố chỉ có 2 ước là 1 và chính nó
ab có 2 chữ số nên luôn khác a
=> a = 1
Vậy đó là các số nguyên số có hàng chục là 1 ( 11 ; 13 ; 17 ; 19 )
không có kết quả
ko có kết quả