K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 7 2016

\(\sqrt{x^2-5x+6}+\sqrt{x+1}=\sqrt{x-2}+\sqrt{x^2-2x-3}\)

ĐK:  x^2-5x+6>=0<=> x<=2 hoặc x>=3

       x^2-2x-3>=0<=> x<=-1 hoặc x>=3

<=>\(\sqrt{x^2-5x+6}+\sqrt{x+1}=\sqrt{x-2}+\sqrt{x^2-2x-3}\)

<=>\(\sqrt{\left(x-3\right)\left(x-2\right)}+\sqrt{x+1}=\sqrt{x-2}+\sqrt{\left(x-3\right)\left(x+1\right)}\)

<=> \(\sqrt{x-2}\left(\sqrt{x-3}-1\right)+\sqrt{x+1}\left(1-\sqrt{x-3}\right)=0\)

<=> \(\sqrt{x-2}\left(\sqrt{x-3}-1\right)-\sqrt{x+1}\left(\sqrt{x-3}-1\right)=0\)

<=> \(\left(\sqrt{x-3}-1\right)\left(\sqrt{x-2}-\sqrt{x+1}\right)=0\)

<=>\(\orbr{\orbr{\begin{cases}\sqrt{x-3}-1=0\\\sqrt{x-2}-\sqrt{x+1}=0\end{cases}}}\)

<=>\(\orbr{\begin{cases}\sqrt{x-3}=1\\\sqrt{x-2}=\sqrt{x+1}\end{cases}}\)

<=> \(\orbr{\begin{cases}x=4\left(nhan\right)\\0x=3\left(vôly\right)=>loai\end{cases}}\)

S={4} 

30 tháng 7 2016

ngungu

a) ĐK: \(x\ge3\)

PT \(\Leftrightarrow\sqrt{\left(x-3\right)\left(x-2\right)}-\sqrt{x-2}+\sqrt{x+1}-\sqrt{\left(x-3\right)\left(x+1\right)}=0\)

     \(\Leftrightarrow\sqrt{x-2}\left(\sqrt{x-3}-1\right)+\sqrt{x+1}\left(1-\sqrt{x-3}\right)=0\)

     \(\Leftrightarrow\left(\sqrt{x-2}-\sqrt{x+1}\right)\left(\sqrt{x-3}-1\right)=0\)

     \(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-2}=\sqrt{x+1}\\\sqrt{x-3}=1\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x-2=x+1\\x-3=1\end{matrix}\right.\) \(\Leftrightarrow x=4\) (Thỏa mãn)

  Vậy ...

      

17 tháng 6 2021

cảm ơn bạn

\(\Leftrightarrow\sqrt{\left(x-2\right)\left(x-3\right)}-\sqrt{x-2}=\sqrt{\left(x-3\right)\left(x+1\right)}-\sqrt{x+1}\)

=>\(\sqrt{x-2}\left(\sqrt{x-3}-1\right)-\sqrt{x+1}\left(\sqrt{x-3}-1\right)=0\)

=>\(\left(\sqrt{x-3}-1\right)\left(\sqrt{x-2}-\sqrt{x+1}\right)=0\)

=>x-3=1

=>x=4

24 tháng 9 2021

1) \(ĐK:x\in R\)

2) \(ĐK:x< 0\)

3) \(ĐK:x\in\varnothing\)

4) \(=\sqrt{\left(x+1\right)^2+2}\) 

\(ĐK:x\in R\)

5) \(=\sqrt{-\left(a-4\right)^2}\)

\(ĐK:x\in\varnothing\)

 

6: \(\Leftrightarrow2x^2+3x+9+\sqrt{2x^2+3x+9}-42=0\)

Đặt \(\sqrt{2x^2+3x+9}=a\left(a>=0\right)\)

Phương trình sẽ trở thành là: a^2+a-42=0

=>(a+7)(a-6)=0

=>a=-7(loại) hoặc a=6(nhận)

=>2x^2+3x+9=36

=>2x^2+3x-27=0

=>2x^2+9x-6x-27=0

=>(2x+9)(x-3)=0

=>x=3 hoặc x=-9/2

8: \(\Leftrightarrow x-1-2\sqrt{x-1}+1+y-2-4\sqrt{y-2}+4+z-3-6\sqrt{z-3}+9=0\)
=>\(\left(\sqrt{x-1}-1\right)^2+\left(\sqrt{y-2}-2\right)^2+\left(\sqrt{z-3}-3\right)^2=0\)

=>\(\left\{{}\begin{matrix}\sqrt{x-1}-1=0\\\sqrt{y-2}-2=0\\\sqrt{z-3}-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-1=1\\y-2=4\\z-3=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=6\\z=12\end{matrix}\right.\)

NV
3 tháng 3 2021

Câu a bạn coi lại đề

b. ĐKXĐ: \(x\ge0;x\ne1\)

\(\Leftrightarrow\dfrac{\sqrt{2x+1}+\sqrt{3x}}{1-x}=\dfrac{\sqrt{3x+2}}{1-x}\)

\(\Leftrightarrow\sqrt{2x+1}+\sqrt{3x}=\sqrt{3x+2}\)

\(\Leftrightarrow5x+1+2\sqrt{3x\left(2x+1\right)}=3x+2\)

\(\Leftrightarrow2\sqrt{6x^2+3x}=1-2x\) (\(x\le\dfrac{1}{2}\) )

\(\Leftrightarrow4\left(6x^2+3x\right)=4x^2-4x+1\)

\(\Leftrightarrow20x^2+16x-1=0\)

\(\Rightarrow x=\dfrac{-4+\sqrt{21}}{10}\)

AH
Akai Haruma
Giáo viên
3 tháng 3 2021

Bạn xem lại đề câu a.