Cho n số a1; a2; ...; an thuộc Z biết rằng giá trị tuyệt đối ai bằng với i bằng 1; 2; 3;...; n và a1a2 + a2a3 + a3a4 +....+ ana1 bằng 0. Chứng minh n chia hết cho 4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
uses crt;
var a:array[1..1000000]of longint;
i,n,x:longint;
begin
clrscr;
write('Nhap n='); readln(n);
for i:=1 to n do
begin
write('A[',i,']='); readln(a[i]);
end;
write('Nhap x='); readln(x);
for i:=1 to n do
if a[i]<>x then write(a[i]:4);
readln;
end.
Ta có với số nguyên a bất kì:
| a | - a = a - a = 0 là số chẵn nếu a\(\ge\)0
| a | - a = -a - a = -2a là số chẵn nếu a < 0
Tóm lại: | a | - a là số chẵn với a nguyên bất kì
=> | a1 - a2 | - ( a1 - a2) là số chẵn
| a2 - a3 | - ( a2 - a3) là số chẵn
| a3 - a4 | - ( a3 - a4) là số chẵn
....
| an- a1 | - ( an - a1) là số chẵn
=> [ | a1 - a2| + |a2 - a3| + | a3 - a4| +...+ |an - a1| ] - [( a1 - a2) + (a2 - a3) + ( a3 - a4)+...+ (an - a1) ] là số chẵn
mà ( a1 - a2) + (a2 - a3) + ( a3 - a4)+...+ (an - a1) = 0 là số chẵn
=> | a1 - a2| + |a2 - a3| + | a3 - a4| +...+ |an - a1| là số chẵn
Vậy S luôn là 1 số chẵn.
uses crt;
const fi='dulieu.inp';
var f1:text;
a:array[1..100]of integer;
n,i,t1,t2:integer;
begin
clrscr;
assign(f1,fi); reset(f1);
readln(f1,n);
for i:=1 to n do
read(f1,a[i]);
t1:=0;
t2:=0;
for i:=1 to n do
begin
if a[i]>0 then t1:=t1+a[i];
if a[i]<0 then t2:=t2+a[i];
end;
writeln('Tong cac so duong la: ',t1);
writeln('Tong cac so am la: ',t2);
close(f1);
readln;
end.
Đặt \(A = a_{1} + a_{2} + \dots + a_{n}; B = a_{1}^3 + a_{2}^3 + \dots + a_{n}^3 \)
Ta có \(a_n^3-a_n=a_n\left(a_n^2-1\right)=a_n\left(a_n-1\right)\left(a_n+1\right)⋮6\)(tích ba số nguyên liên tiếp sẽ có một số chia hết cho 2, một số chia hết cho 3)
Ta có \(B-A=a_1\left(a_1-1\right)\left(a_1+1\right)+a_2\left(a_2-1\right)\left(a_2+1\right)+...+a_n\left(a_n-1\right)\left(a_n+1\right)\)
Suy ra \(B-A⋮6\)
=> A,B cùng chia hết cho 6 hoặc cùng không chia hết cho 6
=> nếu \(A⋮6\)thì \(B⋮6\)
=>ĐPCM
Bổ đề: Do x+(-x) = 0 (mod 2) nên ta cũng có x = -x = |x| (mod 2).
Vậy S = (a1-a2)+(a2-a3)+...+(an-a1) (mod 2)
<=> S = 0 (mod 2) (đpcm).
Bạn xem ở đây nhé: Câu hỏi của BatMan - Toán lớp 6 - Học toán với OnlineMath
bạn vào mục câu hỏi hay của lớp 6 nhé, có bài tương tự rồi.