Cho A = 3 + 32 + 33 +….. + 32014
a, Tính tổng A
b, Chứng minh A chia hết cho 130
c, A có phải số chính phương không ?? Vì sao ???
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)
a)
b)
2)
Vậy A không phải là số chính phương
Học tốt nha
a)A=3+32+33+...+32004
=>3A=32+33+34+...+32005
=>3A-A=(32+33+34+...+32005)-(3+32+33+...+32004)
=>2A=32+33+34+...+32005-3-32-33-...-32004
=>2A=32005-3
=>A=0,10025
a)A=3+32+33+...+32004
=>3A=32+33+34+...+32005
=>3A-A=(32+33+34+...+32005)-(3+32+33+...+32004)
=>2A=32+33+34+...+32005-3-32-33-...-32004
=>2A=32005-3
=>A=\(\frac{3^{2005}-3}{2}\)
b) Ta có
A = 3 + 32 + ... + 32004.
=> A = 3 ( 1+ 3 + 32 ) + 34 ( 1+ 3 + 32 ) + ... + 32001 ( 1+ 3 + 32 )
=> A = 3 . 13 + 34 . 13 + ... + 32001 . 13
=> A = 13 ( 3 + 34 + ... + 32001) chia hết cho 13.
Lại có :
A = 3 + 32 + ... + 32004.
=> A = ( 3 + 33) + (32 + 34) + ... + ( 32002 + 32004)
=> A = 3 ( 1+ 9) + 32 ( 1+ 9) + ... + 32003 ( 1+ 9)
=> A = 10 ( 3 + 32 + ... + 3 2003) chia hết cho 10.
Vậy A vừa chia hết cho 13 vừa chia hết cho 10 mà ( 13;10) = 1
=> A chia hết cho 130.
A=3+32+33+......+32004
3A=32+33+......+32005
3A-A= ( 32+33+......+32005 ) - ( 3+32+33+......+32004 )
2A=32005-3
A=\(\frac{3^{2005}-3}{2}\)
\(A=3+3^2+3^3+...+3^{2014}\)
\(2A=3^2+3^3+3^4+...+3^{2015}\)
\(2A-A=3^2+3^3+3^4+...+3^{2015}-3-3^2-...-3^{2014}\)
\(A=3^{2015}-3\)
a) A = 3 + 32 + 33 + ... + 32014
=> 3A = 3(3 + 32 + 33 + ... + 32014)
=> 3A = 32 + 33 + 34 + ... + 32015
=> 3A - A = (32 + 33 + 34 + ... + 32015) - (3 + 32 + 33 + ... + 32014)
=> 2A = 32015 - 3
=> A = (32015 - 3) : 2
c) Ta thấy 3 ⋮ 3, 32 ⋮ 3, 33 ⋮ 3, ... , 32014 ⋮ 3
=> 3 + 32 + 33 + ... + 32014 ⋮ 3 => A ⋮ 3
Ta thấy 3 không chia hết cho 32, 32 ⋮ 32, 33 ⋮ 32, ... , 32014 ⋮ 32
=> 3 + 32 + 33 + ... + 32014 không chia hết cho 32
=> A không chia hết cho 32
=> A không phải là số chính phương (vì số chính phương chia hết cho số nguyên tố p thì phải chia hết cho p2).