K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 12 2022

đáp án lá c

1:

Xét ΔBAC có

BM,CN là trung tuyến

BM cắt CN tại G

=>G là trọng tâm

=>BG=2/3BM và CG=2/3CN

BG+CG>BC

=>2/3BM+2/3CN>BC

=>2/3(BM+CN)>BC

=>BM+CN>3/2BC

2:
BF=2BE

=>EF=BE

=>EF=2ED

=>D là trung điểm của EF

Xét ΔFEC có

CD,EK là trung tuyến

CD cắt EK tại G

=>G là trọng tâm

b: G là trọng tâm của ΔFEC

=>GE/GK=1/2 và GC/DC=2

10 tháng 7 2016

.k cho tớ cái

a) Sửa đề: Cm AG vuông góc với BC

Ta có: \(AN=NB=\dfrac{AB}{2}\)(N là trung điểm của AB)

\(AM=MC=\dfrac{AC}{2}\)(M là trung điểm của AC)

mà AB=AC(ΔABC cân tại A)

nên AN=NB=AM=MC

Xét ΔNBC và ΔMCB có 

NB=MC(cmt)

\(\widehat{NBC}=\widehat{MCB}\)(hai góc ở đáy của ΔABC cân tại A)

BC chung

Do đó: ΔNBC=ΔMCB(c-g-c)

Suy ra: \(\widehat{NCB}=\widehat{MBC}\)(hai góc tương ứng)

hay \(\widehat{GBC}=\widehat{GCB}\)

Xét ΔGBC có \(\widehat{GBC}=\widehat{GCB}\)(cmt)

nên ΔGBC cân tại G(Định lí đảo của tam giác cân)

Suy ra: GB=GC(hai cạnh bên)

Ta có: AB=AC(ΔABC cân tại A)

nên A nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(1)

Ta có: GB=GC(cmt)

nên G nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(2)

Từ (1) và (2) suy ra AG là đường trung trực của BC

hay AG\(\perp\)BC(đpcm)

 

3 tháng 1 2018

20 tháng 4 2022

giúp mik với đang cần gấp lém :((
ét-o-ét 

14 tháng 3 2021

undefined

BM = 3/2 BG, CN = 3/2 CG

Ta có BM + CN = 3/2 (BG + CG) > 3/2. BC = 3/2 x 12 = 18

 

 

 

Xét ΔABC có

N là trung điểm của AB

M là trung điểm của AC

Do đó: NM là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)

Suy ra: NM//BC và \(NM=\dfrac{BC}{2}\)(1)

Xét ΔGBC có 

E là trung điểm của GB(gt)

F là trung điểm của GC(gt)

Do đó: EF là đường trung bình của ΔGBC(Định nghĩa đường trung bình của tam giác)

Suy ra: EF//BC và \(EF=\dfrac{BC}{2}\)(2)

Từ (1) và (2) suy ra NM//EF và NM=EF

a: Xét ΔAMB vuông tại M và ΔANC vuông tại N có

AB=AC

\(\widehat{NAC}\) chung

Do đó: ΔAMB=ΔANC

Suy ra: MB=NC

b: Ta có: ΔAMB=ΔANC

nên AM=AN

Ta có: AN+NB=AB

AM+MC=AC

mà AN=AM

và AB=AC

nên NB=MC

Xét ΔNBD vuông tại N và ΔMCD vuông tại M có 

NB=MC

\(\widehat{NBD}=\widehat{MCD}\)

Do đó: ΔNBD=ΔMCD

Suy ra: ND=MD

c: Ta có: ΔNBD=ΔMCD

nên BD=CD

hay D nằm trên đường trung trực của BC(1)

Ta có: AB=AC

nên A nằm trên đường trung trực của BC(2)

Ta có: EB=EC

nên E nằm trên đường trung trực của BC(3)

Từ (1), (2) và (3) suy ra A,D,E thẳng hàng