bz-cy/a=cx-az/b=ay-bx/c
chứng minh rằng x:y:z=a:b:c
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì bz-cy/a=cx-az/b=ay-bx/c
=> a(bz-cy)/a^2=b(cx-az)/b^2=c(ay-bx)/c^2
=> abz-acy/a^2=bcx=baz/b^2=cay-cbx/c^2
theo tính chất của dãy tỉ số bằng nhau :
=> abz-acy/a^2=bcx=baz/b^2=cay-cbx/c^2=a^2+...
= 0/a^2+b^2+c^2=0
vì bz-cy/a=0=>bz=cy=>y/b=z/c (1)
vì cx-az/b=0=>cx=az=>x/a=z/c (2)
từ (1) và (2) => x/a=y/b=z/c
Ta có :
\(\frac{bz-cy}{a}=\frac{cy-az}{b}=\frac{ay-bx}{c}=\frac{bxz-cxy}{ax}=\frac{cxy-ayz}{by}=\frac{ayz-bxz}{cz}=\frac{0}{ax+by+cz}=0\)
Suy ra : bz = cy \(\Rightarrow\frac{z}{c}=\frac{y}{b}\)( 1 )
cx = az \(\Rightarrow\frac{x}{a}=\frac{z}{c}\) ( 2 )
ay = bx \(\Rightarrow\frac{y}{b}=\frac{x}{a}\) ( 3 )
Từ ( 1 ) , ( 2 ) và ( 3 ) suy ra : \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)hay x : y : z = a : b : c
thân em thì nhỏ tí ti
các bà các chị , các dì đều thương
em đi em lại 4 phương
dọc ngang lắm lối , lách luồn nhiều nơi
tấm thân hiến chọn cho đời
sang hèn chẳng chê chuộng ,giúp người chẳng quản công
(đó là cây gì)?
Ta có \(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}\)\(=>\frac{bzx-cyx}{ax}=\frac{ycx-ayz}{by}=\frac{zay-bxz}{cz}\)\(=\frac{bzx-cyx+cyz-ayz+ayz-bzx}{ax+by+cz}=\frac{0}{ax+by+cz}=0\)
\(=>\hept{\begin{cases}bz-cy=0\\cx-az=0\\ay-bx=0\end{cases}\left(=\right)\hept{\begin{cases}bz=cy\\cx=az\\ay=bx\end{cases}\left(=\right)\hept{\begin{cases}\frac{b}{y}=\frac{c}{z}\\\frac{c}{z}=\frac{a}{x}\\\frac{a}{x}=\frac{b}{y}\end{cases}}}}\)
\(=>\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\)hay a:b:c=x:y:z
học tốt
Ta có : bz-cy/a=cx-az/b=ay-bx/c
=a.(bz-cy)/a.a=b.(cx-az)/b.b=c.(ay-bx)/c.c
=abz-acy/a.a=bcx-baz/b.b=cay-cbx/c.c
=abz-acy+bcx-baz+cay-cbx/a.a+b.b+c.c(áp dụng tính chất dãy tỉ số bằng nhau)
=0 =)bz-cy=cx-az=ay-bx=0
=)bz=cy,cx=az,ay=bx
=)b/y=c/z=a/x(áp dụng tính chất tỉ lệ thức)
=)a:b:c=x:y:z
rõ hơn phần áp dụng được không