Gía trị nguyên x thỏa mãn 1/2.4 + 1/4.6 + 1/6.8 + .... + 1/x.( x + 2 ) = 0,24 là :
A . x = 50
B . x = 100
C . x = 48
D . x = 98
giải câu này giúp mình với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
X-1/x+2=x-2/x+3
=>(x-1)(x+3)=(x+2)(x-2)
=>x(x+3)-1(x+3)=x(x-2)+2(x-2)
=>x^2+3x-x-3=x^2-2x+2x-4
=>x^2+2x-3=x^2-4
=>2x-3=-4=>x=-1/2=-0,5
vậy...
\(\frac{x-1}{x+2}=\frac{x-2}{x+3}\Leftrightarrow\left(x-1\right)\left(x+3\right)=\left(x-2\right)\left(x+2\right)\)
\(\Leftrightarrow x^2-x+3x-3=x^2-2x+2x-4\)
\(\Leftrightarrow x^2+2x-3=x^2-4\)
\(\Leftrightarrow x^2-x^2+2x=3-4\)
\(\Leftrightarrow2x=-1\Leftrightarrow x=-\frac{1}{2}\)
tự làm đi đừng ai giúp nhé lần này lại gặp mi nữa rồi
\(1,\Leftrightarrow x^2-10x+25=0\Leftrightarrow\left(x-5\right)^2=0\Leftrightarrow x=5\left(B\right)\\ 2,Giống.1\\ 3,=5x^2\left(B\right)\\ 4,x^3=x\Leftrightarrow x^3-x=0\\ \Leftrightarrow x\left(x^2-1\right)=0\\ \Leftrightarrow x\left(x-1\right)\left(x+1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\x=-1\end{matrix}\right.\\ \Leftrightarrow A\)
Đặt: \(A=1+5+5^2+...+5^{2013}\)
\(5A=5\left(1+5+5^2+...+5^{2013}\right)\)
\(=5+5^2+5^3+...+5^{2014}\)
\(5A-A=\left(5+5^2+...+5^{2014}\right)-\left(1+5+5^2+...+5^{2013}\right)\)
\(4A=5^{2014}-1\)\(\Rightarrow A=\frac{5^{2014}-1}{4}\)
Có: \(A.\left|x-1\right|=5^{2014}-1hay\frac{5^{2014}-1}{4}.\left|x-1\right|=5^{2014}-1\)
\(\left(5^{2014}-1\right).\left|x-1\right|=4.5^{2014}-4\)
\(\left|x-1\right|=\frac{4\left(5^{2014}-1\right)}{5^{2014}-1}\)
\(\left|x-1\right|=4\)
\(\Rightarrow x-1=4\)hoặc \(x-1=-4\)
+) Xét: \(x-1=4\)
\(x=4+1\)
\(x=5\)
+) Xét: \(x-1=-4\)
\(x=-4+1\)
\(x=-3\)
Vậy \(x=5\)hoặc \(x=-3\)
2
\(S1=\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+...+\frac{1}{100.102}\)
\(S1=\frac{1}{2}.\left(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+...+\frac{2}{100.102}\right)\)
\(S1=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{100}-\frac{1}{102}\right)\)
\(S1=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{102}\right)\)
\(S1=\frac{1}{2}.\left(\frac{51}{102}-\frac{1}{102}\right)\)
\(S1=\frac{1}{2}.\frac{25}{51}\)
\(S1=\frac{25}{102}\)