K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 8 2020

Bg

a) Ta có: A = \(\frac{4n+1}{3n+1}\)    (n thuộc Z)

Để A thuộc Z thì 4n + 1 \(⋮\)3n + 1

=> 4.(3n + 1) - 3.(4n + 1) \(⋮\)3n + 1

=> 12n + 4 - (12n + 3) \(⋮\)3n + 1

=> 12n + 4 - 12n - 3 \(⋮\)3n + 1

=> (12n - 12n) + (4 - 3) \(⋮\)3n + 1

=> 1 \(⋮\)3n + 1

=> 3n + 1 thuộc Ư(1)

Ư(1) = {1; -1}

=> 3n + 1 = 1 hay -1

=> 3n = 1 - 1 hay -1 - 1

=> 3n = 0 hay -2

=> n = 0 ÷ 3 hay -2 ÷ 3

=> n = 0 hay -2/3

Mà n thuộc Z

=> n = 0

Vậy n = 0 thì A nguyên

8 tháng 5 2021
A. B C Nhé chứ ko liền nhau
5 tháng 5 2021

khó quá

5 tháng 4 2021

đễ quá 

1 tháng 5 2017

A = \(\frac{2n+3}{n-3}+\frac{3n-5}{n-3}+\frac{4n-5}{n-3}=\frac{2n+3+3n-5+4n-5}{n-3}=\frac{9n-7}{n-3}=\frac{9n-27+20}{n-3}=\frac{9\left(n-3\right)+20}{n-3}=9+\frac{20}{n-3}\)

a, Để A nguyên <=> n - 3 thuộc Ư(20) = {1;-1;2;-2;4;-4;5;-5;10;-10;20;-20}

n-31-12-24-45-510-1020-20
n42517-18-213-723-17

Vậy...

b, Để A tối giản <=> UCLN(20,n-3) = 1

=> n-3 không chia hết cho 20

=> n-3 khác 20k (k thuộc Z)

=> n khác 20k + 3

Vậy.....

1 tháng 5 2017

a) Ta có : 

\(A=\frac{2n+3}{n-3}+\frac{3n-5}{n-3}+\frac{4n-5}{n-3}=\frac{\left(2n+3\right)+\left(3n-5\right)+\left(4n-5\right)}{n-3}=\frac{7n-7}{n-3}=\frac{7n-21+14}{n-3}=\frac{7\left(n-3\right)+14}{n-3}=7+\frac{14}{n-3}\)để A là số nguyên thì \(\frac{14}{n-3}\)là số nguyên

\(\Rightarrow14\)\(⋮\)\(n-3\)

\(\Rightarrow\)n - 3 \(\in\)Ư ( 14 ) = { 1 ; -1 ; 2 ; -2 ; 7 ; -7 ; 14 ; -14 }

lập bảng ta có :

n - 3 1-12-27-714-14
n425110-417-11

b) Để A là phân số tối giản \(\Leftrightarrow\)ƯCLN ( 7n - 7 ; n - 3 ) = 1 \(\Leftrightarrow\)ƯCLN ( 14 ; n - 3 ) = 1

\(\Leftrightarrow\)n - 3 không chia hết cho 14

\(\Rightarrow\)n - 3 \(\ne\)14k

\(\Rightarrow\)\(\ne\)14k + 3