Giúp mình với nha ^^
Cho tam giác ABC, vẽ đường caoAH. Gọi M, N lần lượt là trung điểm của AB, AC. Vẽ MI và NK vuông góc với BC (I, K thuộc BC)
Chứng minh: a) MI = NK
b) IK = 1/2 BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình của ΔABC
Suy ra: MN//BC
Xét tứ giác BMNC có MN//BC
nên BMNC là hình thang
a: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình của ΔABC
Suy ra: MN//BC và \(MN=\dfrac{BC}{2}=5\left(cm\right)\)
a: Xét ΔAMB và ΔANC có
AB=AC
\(\widehat{ABM}=\widehat{ACN}\)
BM=CN
Do đó: ΔAMB=ΔANC
Suy ra: AM=AN
b: Xét ΔAIM vuông tại I và ΔAKN vuông tại K có
AM=AN
\(\widehat{IAM}=\widehat{KAN}\)
Do đó: ΔAIN=ΔAKN
Suy ra: AI=AK
a) N đối xứng với I qua P => NP vuông góc với AB => Góc NPB = 90
CMTT: Góc NQB = 90
Xét tứ giác BPNQ có 3 góc vuông => BPNQ là hình chữ nhật.
b) BPNQ là hình chữ nhật => PN = BQ = IN (I đối xứng với N qua P) ; BP = QN = QK (N đối xứng với K qua Q)
Xét tam giác IPB và tam giác BQK có IP = BQ, BP = KQ, góc IPB = góc BQK = 90
=> Hai tam giác bằng nhau => IBP = BKQ , BIP = KBQ, IB = KB
Góc IBK = IBP + PBQ + QBK = 90 + 90 = 180
=> I, B, K thẳng hàng ; mà IB = BK => B là trung điểm IK
c) BPNQ là hình vuông => BP = PN = NQ = QB <=> 2BP = 2PN = 2NQ = 2QB <=> AB = BC
Vậy tam giác ABC vuông cân tại B thì BPNQ là hình vuông.
d) Gọi giao điểm của AK và BN là O. Ta cần c/m : CI cắt BN tại O
Xét tứ giác ANKB có AB = NK (= 2PB) , AB // NK (PB // NQ)
=> ABKN là hình bình hành => AK cắt BN tại trung điểm của mỗi đường <=> O là trung điểm BN
CMTT ta có INCB ;à hình bình hành => IC cắt BN tại trung điểm của mỗi đường => IC cắt BN tại O
=> AK, BN, CI đồng quy tại O
Có AD // NK, đường tròn (MNK) tiếp xúc với AC tại K, suy ra ^ADM = ^MNK = ^AKM
Suy ra 4 điểm A,M,K,D cùng thuộc một đường tròn. Tương tự với 4 điểm A,M,K,E
Từ đó 5 điểm A,K,M,D,E cùng thuộc một đường tròn
Do vậy ^NDE = ^NKM = ^BNM. Vì 2 góc ^NDE, ^BNM so le trong nên DE // BC hay PQ // BC (đpcm).