K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 8 2016

\(\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}...\frac{50^2}{49.51}=\frac{\left(1.2.3.4...50\right)^2}{1.2.3.4...50.51}=\frac{1.2.3...50}{51}=\frac{50!}{51}\)

16 tháng 8 2016

\(\frac{2^2}{1\cdot3}\cdot\frac{3^2}{2\cdot4}\cdot\frac{4^2}{3\cdot5}\cdot\cdot\cdot\frac{50^2}{49\cdot51}\)

\(=\frac{2^2}{1\cdot3}\cdot\frac{3^2}{2\cdot4}\cdot\frac{4^2}{3\cdot5}\cdot\frac{5^2}{4\cdot6}\cdot\frac{7^2}{5\cdot7}\cdot\cdot\cdot\frac{50^2}{49\cdot51}\)

\(=\frac{2}{1}\cdot\frac{50}{51}=\frac{100}{51}\)

27 tháng 7 2016

 \(\frac{2.2.3.3.4.4....50.50}{1.3.2.4.3.5....49.51}=\frac{2.3.4...50}{1.2.3...50}.\frac{2.3.4....50}{3.4.5...51}\)

                                     \(=2.\frac{2}{51}=\frac{4}{51}\)

                                       

26 tháng 2 2017

100/51

26 tháng 2 2017

giai can than ra ho

6 tháng 8 2018

So sánh à bạn?

6 tháng 8 2018

A=\(\frac{1}{2}\).\(\frac{2}{3}\)....\(\frac{2012}{2013}\)=\(\frac{1}{2013}\)

B=\(\frac{2012}{2012.2013}\)=\(\frac{1}{2013}\)

vậy A=B

11 tháng 4 2017

\(B=\frac{2.2}{1.3}.\frac{3.3}{2.4}...\frac{2015.2015}{2014.2016}\)

\(B=\frac{2.3...2015}{1.2...2014}.\frac{2.3...2015}{3.4...2016}\)

\(B=2015.\frac{1}{1008}\)

\(B=\frac{2015}{1008}\)

17 tháng 4 2019

G = \(\frac{2^2}{1.3}\).\(\frac{3^2}{2.4}\).\(\frac{4^2}{3.5}\).....\(\frac{50^2}{49.51}\)                         

=> G = \(\frac{2.2}{1.3}\).\(\frac{3.3}{2.4}\).\(\frac{4.4}{3.5}\).....\(\frac{50.50}{49.51}\)

=> G = \(\frac{2.2.3.3.4.4.....50.50}{1.2.3.3.4.4.....50.51}\)

=> G = \(\frac{2.50}{1.51}\)

=> G = \(\frac{100}{51}\)

17 tháng 4 2019

公关稿黄继线长旧款您

13 tháng 2 2019

Đề bài ???

 

13 tháng 2 2019

\(\frac{2^2}{1.3}\times\frac{3^2}{2.4}\times............................\times\frac{50^2}{49.50}\)

\(=\frac{2.2}{1.3}\times\frac{3.3}{2.4}\times....................\times\frac{50.50}{49.50}\)

\(=\frac{\left(2.3.4..............50\right)\left(2.3.4............50\right)}{\left(1.2.3.............49\right)\left(3.4.5...........50\right)}\)

\(=\frac{50}{49}.2\)

\(=\frac{100}{49}\)

26 tháng 6 2016

\(A=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+.........+\frac{1}{99.100}\)

\(A=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}+....+\frac{1}{99}-\frac{1}{100}\)

\(A=\frac{1}{2}-\frac{1}{100}\)

\(A=\frac{49}{100}\)

26 tháng 6 2016

\(A=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+.........+\frac{1}{99.100}\)

\(A=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}+....+\frac{1}{99}-\frac{1}{100}\)

\(A=\frac{1}{2}-\frac{1}{100}\)

\(A=\frac{49}{100}\)