K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 3 2022

khó quá

gianroi

21 tháng 3 2022

Đề sai r bn, nếu x,y thay đổi thì tổng biểu thức cũng thay đổi

a: \(=3x^4+3x^2y^2+2x^2y^2+2y^4+y^2\)

\(=\left(x^2+y^2\right)\left(3x^2+2y^2\right)+y^2\)

\(=3x^2+3y^2=3\)

b: \(=7\left(x-y\right)+4a\left(x-y\right)-5=-5\)

c: \(=\left(x-y\right)\left(x^2+xy+y^2\right)+xy\left(y-x\right)+3=3\)

d: \(=\left(x+y\right)^2-4\left(x+y\right)+1\)

=9-12+1

=-2

1 tháng 6 2019

D   =   ( x 3   +   y 3 )   –   x y ( x   +   y )     =   ( x   +   y ) ( x 2   –   x y   +   y 2 )   –   x y ( x   +   y )     =   ( x   +   y ) ( x 2   –   x y   +   y 2   –   x y )     =   ( x   +   y ) [ x ( x   –   y )   –   y ( x   –   y ) ]     =   ( x   +   y ) ( x   –   y ) 2

 

Vì x = y ó x – y = 0 nên D   =   ( x   +   y ) ( x   –   y ) 2   =   0

Đáp án cần chọn là: D

17 tháng 9 2019

Ta có

B   =   x 3   +   x 2 y   –   x y 2   –   y 3     =   x 2 ( x   +   y )   –   y 2 ( x   +   y )   =   ( x 2   –   y 2 ) ( x   +   y )     =   ( x   –   y ) ( x   +   y ) ( x   +   y )   =   ( x   –   y ) ( x   +   y ) 2

 

Thay x = 3,25 ; y = 6,57 ta được

B   =   ( 3 , 25   –   6 , 75 ) ( 3 , 25   +   6 , 75 ) 2     =   - 3 , 5 . 10 2   =   - 350

 

Đáp án cần chọn là: B

15 tháng 10 2023

Sửa đề: \(A=x^3+x^2y-xy^2-y^3+x^2-y^2+2x+2y+3\)

\(A=x^2\left(x+y\right)-y^2\left(x+y\right)+\left(x-y\right)\left(x+y\right)+2x+2y+3\)

\(=-x^2+y^2+\left(-x+y\right)-2+3\)

\(=-\left(x-y\right)\left(x+y\right)-\left(x-y\right)+1\)

\(=\left(x-y\right)\left(-x-y-1\right)+1\)

\(=\left(x-y\right)\left(1-1\right)+1=1\)

AH
Akai Haruma
Giáo viên
13 tháng 8 2021

Bài 1:

Ta thấy: $(x+\frac{1}{2})^2\geq 0$ với mọi $x\in\mathbb{R}$

$\Rightarrow (x+\frac{1}{2})^2+\frac{5}{4}\geq \frac{5}{4}$

Vậy gtnn của biểu thức là $\frac{5}{4}$

Giá trị này đạt tại $x+\frac{1}{2}=0\Leftrightarrow x=-\frac{1}{2}$

AH
Akai Haruma
Giáo viên
13 tháng 8 2021

Bài 2:

$x+y-3=0\Rightarrow x+y=3$
\(M=x^2(x+y)-(x+y)x^2-y(x+y)+4y+x+2019\)

\(=-3y+4y+x+2019=x+y+2019=3+2019=2022\)

24 tháng 7 2017

Đáp án: A

a: Thay x=1; y=-1 và z=-2 vào biểu thức \(2xy\left(5x^2y+3x-z\right)\), ta được:

\(2\cdot1\cdot\left(-1\right)\cdot\left(-5+3+2\right)\)

=0

b: Thay x=1; y=-1 và z=-2 vào biểu thức \(xy^2+y^2z^3+z^3x^4\), ta được:

\(1\cdot\left(-1\right)^2+\left(-1\right)^2\cdot\left(-8\right)+\left(-8\right)\cdot1\)

\(=1-8-8=-15\)

\(A=2x+xy^2-x^2y-2y\)

\(=2\left(x-y\right)-xy\left(x-y\right)\)

\(=\left(x-y\right)\left(2-xy\right)\)

\(=\left(-\dfrac{1}{2}-\dfrac{-1}{3}\right)\left(2-\dfrac{-1}{2}\cdot\dfrac{-1}{3}\right)\)

\(=\left(\dfrac{1}{3}-\dfrac{1}{2}\right)\cdot\left(2-\dfrac{1}{6}\right)\)

\(=\dfrac{-1}{6}\cdot\dfrac{11}{6}=-\dfrac{11}{36}\)