K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

A=1/1x2+1/2x3+.....+1/99x100

A=1/1-1/2+1/2-1/3+...+1/99-1/100

A=1/1 - 1/100

A=99/100

24 tháng 7 2016

ta có: A=1/1x2+1/2x3+...+1/99x100

A=1-1/2+1/2-1/3+...+1/99-1/100

A=1-1/100

A=99/100

25 tháng 6 2017

\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{43.44}+\frac{1}{44.45}\)

\(A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{43}-\frac{1}{44}+\frac{1}{44}-\frac{1}{45}\)

\(A=\frac{1}{1}-\frac{1}{45}\)

\(A=\frac{44}{45}\)

ko bt

ai ko pc dống mik tk mik nha

15 tháng 3 2016

1/1x2 + 1/2x3 + 1/3x4 + 1/4x5 + 1/5x6 + 1/6x7

=1/1-1/2+1/2-1/3+...-1/7

=1+(1/2-1/2+1/3-1/3+...+1/6-1/6)-1/7

=1 +0+0+...-1/7

=1-1/7

=6/7

  

15 tháng 3 2016

hình như là 8/7
 

28 tháng 5 2020

program tinhtoan;

uses crt;

var: i;n:interger;

S:real;

writeln(' Nhap n='); readln(n);

S:=0;

For i:=1 to n*(n*1) do S:=S+\(\frac{1}{i};\)

writeln(' S=',S);

End.

(ps: ko chắc )

5 tháng 3 2016

1999/1000

tớ gặp bài này rồi, k nhé

11 tháng 3 2016

đúng thế còn cách làm tớ biết rồi!

25 tháng 10 2021

\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{2009}-\dfrac{1}{2010}\\ =1-\dfrac{1}{2010}=\dfrac{2009}{2010}\)

21 tháng 2 2017

Đặt A = \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{999.1000}+1\)

=> A = \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.....+\frac{1}{999}-\frac{1}{1000}+1\)

=> A = \(1-\frac{1}{1000}+1=\frac{999}{1000}+1=\frac{1999}{1000}\)

21 tháng 2 2017

2 nha bạn

14 tháng 3 2016

=1999/1000

dung 10000000000000000000000000000000000000000%