Đặt vật sáng AB vuông góc với trục chính của một thấu kính hội tụ f=6cm và cách thấu kính 9cm
1)Vẽ ảnh A'B' của AB theo tính tỉ lệ
2)Tính khoảng cách từ ảnh đến thấu kính và chiều cao của ảnh (OA';A'B') biết AB=1cm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xétΔOAB và ΔOA'B'
\(\dfrac{AB}{A'B'}=\dfrac{OA}{OA'}\)⇒\(\dfrac{AB}{A'B'}=\dfrac{8}{OA'}\left(1\right)\)
xétΔOFI và ΔF'A'B'
\(\dfrac{OI}{A'B'}=\dfrac{12}{OF'+OA'}\)(2)
từ (1) và (2)⇒\(\dfrac{8}{OA'}=\dfrac{12}{12+OA'}\)
⇔8.(12+OA')=12.OA'
⇔96+8.OA'=12.OA'
⇔8.OA'-12.OA'=96
⇔-4.OA'=96
⇔OA'=-24 cm
thay OA'=-24 vào (1)
\(\dfrac{1}{A'B'}=\dfrac{8}{-24}\)⇒A'B'=\(-\dfrac{1}{3}\) cm
Ảnh ảo, cùng chiều và nhỏ hơn vật.
Khoảng cách từ ảnh đến thấu kính:
\(\dfrac{1}{f}=\dfrac{1}{d'}-\dfrac{1}{d}\Rightarrow\dfrac{1}{12}=\dfrac{1}{d'}-\dfrac{1}{8}\)
\(\Rightarrow d'=4,8cm\)
Độ cao ảnh A'B':
\(\dfrac{h}{h'}=\dfrac{d}{d'}\Rightarrow\dfrac{2}{h'}=\dfrac{8}{4,8}\Rightarrow h'=1,2cm\)
Ảnh thật, ngược chiều và lớn hơn vật.
Khoảng cách từ ảnh đến thấu kính:
\(\dfrac{1}{f}=\dfrac{1}{d}+\dfrac{1}{d'}\Rightarrow\dfrac{1}{6}=\dfrac{1}{9}+\dfrac{1}{d'}\)
\(\Rightarrow d'=18cm\)
Độ cao ảnh:
\(\dfrac{h}{h'}=\dfrac{d}{d'}\Rightarrow\dfrac{1}{h'}=\dfrac{9}{18}\Rightarrow h'=2cm\)