Cho nửa đường tròn (0) đường kính AB, I là điểm chính giữa của cung AB. Lấy M thuộc cung AI , tiếp tuyến tại D cắt đường thẳng BI tại D.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.tứ giác AMDO nội tiếp (∠AOD+∠AMD=180)
⇒BD.BM=BO.BA
mà A,B,O cố định nên BO.BA không đổi
⇒BD.BM không có giá trị phụ thuộc vào vị trí điểm m
b.có ∠EMB=\(\dfrac{1}{2}\stackrel\frown{MB}\) (góc tạo bởi tia tiếp tuyến và dây cung)
do tứ giác AMDO nội tiếp⇒∠MAO=∠MDE(1)
∠MAO=\(\dfrac{1}{2}\stackrel\frown{MB}\)
⇒∠EMB=∠MAO(2)
từ (1) và (2) ⇒∠EMB=∠MDE
⇒ΔEMD cân tại E
⇒ED=EM
a: \(S_{q\left(OAC\right)}=\dfrac{pi\cdot R^2\cdot90}{360}=pi\cdot\dfrac{R^2}{4}\)
\(S_{OAC}=\dfrac{1}{2}\cdot OA\cdot OC=\dfrac{1}{2}\cdot R^2\)
=>\(S_{vp}=pi\cdot\dfrac{R^2}{4}-\dfrac{1}{2}\cdot R^2\)
b: SỬa đề: AM cắt OC tại I
góc AMB=1/2*180=90 độ
góc IOB+gócIMB=180 độ
=>IOBM nội tiếp
a: C là điểm chính giữa của cung AB
=>OC vuông góc AB
góc OHE=góc OME=90 độ
=>OHME nội tiếp
b: góc AMB=1/2*sđ cung AB=90 độ
=>góc AMH+góc AOH=180 độ
=>OHMA nội tiếp
=>O,H,M,E,A cùng thuộc 1 đường tròn
=>góc EAO=90 độ
OHEA có 3 góc vuông
=>OHEA là hcn
=>EH=OA=R
a: Xét (O) có
ΔAHB nội tiếp
AB là đường kinh
=>ΔAHB vuông tại H
Xét tứ giác BHKI có
góc BHK+góc BIK=180 độ
=>BHKI là tứ giác nội tiếp
b: góc SKH=1/2(sđ cung CH+sđ cung AD)
=1/2(sđ cung CH+sđcung AC)
=1/2*sđ AH
=góc SHK
=>SK=SH
c: Xét ΔSHC và ΔSDH có
góc SHC=góc SDH
góc HSC chung
=>ΔSHC đồng dạng với ΔSDH
=>SH/SD=SC/SH
=>SH^2=SD*SC
Sửa đề: Tiếp tuyến tại A của đường tròn cắt đường thẳng BI tại D