K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 12 2019

Ba điểm B, I, C không thẳng hàng.

Xét bất đẳng thức tam giác trong ΔIBC:

IB < IC + CB

⇒ IB + IA < IA + IC + BC (cộng cả hai vế với IA)

hay IB + IA < CA + CB (vì IA + IC = AC)

26 tháng 3 2022

a)Gọi I là giao điểm của BM và AC.

Áp dụng bất đẳng thức tam giác vào ΔIMC ta có: MC<MI+IC (1)

Cộng MB vào hai vế (1) ta được: MC+MB<MI+IC+MB

⇒MC+MB<MI+MB+IC

⇒MC+MB<IB+IC (2)

b)Áp dụng bất đẳng thức tam giác vào ΔIBA ta có: IB<IA+AB (3)

Cộng IC vào hai vế (3) ta được: IB+IC<IA+AB+IC

⇒ IB+IC<IA+IC+AB

⇒IB+IC<AC+AB (4)

c)Từ (2) và (4) suy ra MB+MC<AB+AC

d)Áp dụng bđt tam giác, ta có:

AB+AI > BI = MB+MI, CI + MI > MC

=> AB + AI + CI + MI > MB + MI + MC

Mà AI + CI = AC

=> AB + AC > MB + MC [1]

Áp dụng bđt tam giác, ta cũng có:

BA + BC > MA + MC [2],

CA + CB > MA + MB [3]

Từ [1][2][3] => 2 (AB+AC+CA) > MA + MB + MC

=> MA + MB + MC < AB + AC + BC (đpcm)

 

19 tháng 4 2017

a) M nằm trong tam giác nên ABM

=> A, M, I không thẳng hang

Theo bất đẳng thức tam giác với ∆AMI:

AM < MI + IA (1)

Cộng vào hai vế của (1) với MB ta được:

AM + MB < MB + MI + IA

Mà MB + MI = IB

=> AM + MB < BI + IA

b) Ba điểm B, I, C không thẳng hang nên BI < IC + BC (2)

cộng vào hai vế của (2) với IA ta được:

BI + IA < IA + IC + BC

Mà IA + IC = AC

Hay BI + IA < AC + BC

c) Vì AM + MB < BI + IA

BI + IA < AC + BC

Nên MA + MB < CA + CB

Vậy số đo cạnh thứ ba là 11cm

30 tháng 3 2015

a)  M nằm trong tam giác nên ABM

=> A, M, I không thẳng hang

Theo bất đẳng thức tam giác với ∆AMI:

AM < MI + IA (1)

Cộng vào hai vế của (1) với MB ta được:

AM + MB < MB + MI + IA

Mà MB + MI = IB

=> AM + MB < BI + IA

b) Ba điểm B, I, C không thẳng hang nên BI < IC + BC (2)

cộng vào hai vế của (2) với IA ta được:

BI + IA < IA + IC + BC

Mà IA + IC = AC

Hay BI + IA < AC + BC

c) Vì AM + MB < BI + IA

       BI + IA < AC + BC

Nên MA + MB < CA + CB

29 tháng 3 2017

M nằm trong tam giác nên ABM

=> A, M, I không thẳng hang

Theo bất đẳng thức tam giác với ∆AMI:

AM < MI + IA (1)

Cộng vào hai vế của (1) với MB ta được:

AM + MB < MB + MI + IA

Mà MB + MI = IB

=> AM + MB < BI + IA

b) Ba điểm B, I, C không thẳng hang nên BI < IC + BC (2)

cộng vào hai vế của (2) với IA ta được:

BI + IA < IA + IC + BC

Mà IA + IC = AC

Hay BI + IA < AC + BC

c) Vì AM + MB < BI + IA

       BI + IA < AC + BC

Nên MA + MB < CA + CB

Vậy số đo cạnh thứ ba là 11cm

27 tháng 3 2016

bạn này tự hỏi rồi tự trả lời để người khác dung cho a

27 tháng 3 2016

a)  M nằm trong tam giác nên ABM

=> A, M, I không thẳng hàng

Theo bất đẳng thức tam giác với ∆AMI:

AM < MI + IA (1)

Cộng vào hai vế của (1) với MB ta được:

AM + MB < MB + MI + IA

Mà MB + MI = IB

=> AM + MB < BI + IA

b) Ba điểm B, I, C không thẳng hàng nên BI < IC + BC (2)

cộng vào hai vế của (2) với IA ta được:

BI + IA < IA + IC + BC

Mà IA + IC = AC

Hay BI + IA < AC + BC

c) Vì AM + MB < BI + IA

BI + IA < AC + BC

Nên MA + MB < CA + CB

Vậy số đo cạnh thứ ba là 11cm

tự vẽ hình

a) xét tam giác MIA có: MA < MI+IA (bđt tam giác)

                             =>   MA+MB < MI+IA+MB

                              => MA+MB < (MI+MB)+IA 

                             => MA+MB < IB+IA (1)

 b) xét tam giác BIC có: IB < IC+CB (bđt tam giác)

                               => IB+IA < IC+CB+IA

                              => IB+IA < (IC+IA)+CB

                              => IB+IA < CA+CB  (2)

c) từ (1) và (2) => MA+MB < CA+CB