\(\left(1+\frac{7}{9}\right)\left(1+\frac{7}{20}\right)\left(1+\frac{7}{33}\right)...\left(1+\frac{7}{9200}\right)\)
Giải hộ mình với ạ! Ai làm mình cảm thấy đúng thì mình tick
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(1-\frac{2}{5}\right)\left(1-\frac{2}{7}\right)\left(1-\frac{2}{9}\right)\cdot\cdot\cdot\left(1-\frac{2}{2011}\right)\)
\(A=\left(\frac{5-2}{5}\right)\left(\frac{7-2}{7}\right)\left(\frac{9-2}{9}\right)\cdot\cdot\cdot\left(\frac{2011-2}{2011}\right)\)
\(A=\frac{3}{5}\cdot\frac{5}{7}\cdot\frac{7}{9}\cdot\cdot\cdot\frac{2009}{2011}\)(các thừa số trên tử giống dưới mẫu mình lượt bỏ đi nhé!)
\(A=\frac{3}{2011}\)
\(A=\left(1-\frac{2}{5}\right)\left(1-\frac{2}{7}\right)\left(1-\frac{2}{9}\right)...\left(1-\frac{2}{2011}\right)\)
\(=\frac{3}{5}.\frac{5}{7}.\frac{7}{9}...\frac{2009}{2011}\)
\(=\frac{3}{2011}\)
Bài 1:
\(A=\left(\frac{-5}{11}+\frac{7}{22}-\frac{4}{33}-\frac{5}{44}\right):\left(38\frac{1}{122}-39\frac{7}{22}\right)\)
\(=\frac{-49}{132}:\left(-\frac{879}{671}\right)=\frac{2989}{105408}\)
Bài 2:
\(\frac{4}{5}-\left(\frac{-1}{8}\right)=\frac{7}{8}-x\)
<=> \(\frac{7}{8}-x=\frac{27}{40}\)
<=> \(x=\frac{7}{8}-\frac{27}{40}=\frac{1}{5}\)
Vậy...
a) \(\left(\frac{2}{5}-\frac{1}{2}\right)^2-\frac{11}{5}:\frac{-11}{5}=\left(-\frac{1}{10}\right)^2+1=1\frac{1}{100}\)
b) \(\left(-\frac{5}{7}\right)^2+8.\left(0,5\right)^2+\left(-1\right)^{2010}=\frac{25}{49}+2+1=3\frac{25}{49}\)
c) \(\frac{9999^2}{3333^2}+\left(0,5\right)^2.\left(-2\right)^4-\left(-\frac{4}{3}\right)^2=9+1-\frac{16}{9}=8\frac{2}{9}\)
d) \(\left|-\frac{2}{5}+\frac{1}{7}\right|:\frac{-3}{35}+\frac{-3}{7}.\frac{7}{5}=\frac{9}{35}.\frac{35}{-3}-\frac{3}{5}=-3\frac{3}{5}\)
e) \(\frac{1}{2}-\left(-0,4\right)+\frac{1}{3}+\frac{1}{5}-\frac{-1}{6}+\frac{-4}{35}+\frac{1}{41}\)
\(=\frac{1}{2}+\frac{2}{5}+\frac{1}{3}+\frac{1}{5}+\frac{1}{6}-\frac{4}{35}+\frac{1}{41}=1\frac{732}{1435}\)
Đặt \(A=\left(1+\frac{7}{9}\right)\left(1+\frac{7}{20}\right)\left(1+\frac{7}{33}\right)\left(1+\frac{7}{48}\right)+...+\left(1+\frac{7}{2009}\right)\)
\(\Leftrightarrow1+\left(\frac{7}{9}.\frac{7}{20}.\frac{7}{33}.\frac{7}{48}.....\frac{7}{2009}\right)\)
Dãy phân số trên có số phân số là:
(2009 - 9) : 4 + 2 =502
\(\Rightarrow A=1+\left(\frac{7^{502}}{9.20.33.48.....2009}\right)\)
\(A=\frac{16}{9}.\frac{27}{20}.\frac{40}{33}.......\frac{2907}{2900}\)
\(A=\frac{2.8}{1.9}.\frac{3.9}{2.10}.\frac{4.10}{3.11}......\frac{51.57}{50.58}\)
\(A=\frac{2.3.4.....51}{1.2.3...50}.\frac{8.9.10....57}{9.10.11...58}\)
\(A=51.\frac{8}{58}=\frac{204}{29}\)
Bạn Nguyễn Tuấn Minh làm đúng rùi đó !!! Chuẩn ý kiến mk...^.^
`Answer:`
Ta thấy:
\(9=1.9\)
\(20=10.2\)
\(33=11.3\)
...
\(9200=100.92\)
`=>` Mẫu thức của từng nhân tử có dạng là \(n\left(n+8\right)\)
Xét dạng tổng quát của nhân tử: \(1+\frac{7}{n\left(n+8\right)}=\frac{n^2+8n+7}{n\left(n+8\right)}=\frac{\left(n+1\right)\left(n+7\right)}{n\left(n+8\right)}\)
\(n=1\Rightarrow1+\frac{7}{1.9}=\frac{2.8}{1.9}\)
\(n=2\Rightarrow1+\frac{7}{2.10}=\frac{3.9}{2.10}\)
\(n=3\Rightarrow1=\frac{7}{3.10}=\frac{4.10}{3.11}\)
...
\(n=92\Rightarrow1+\frac{7}{92.100}=\frac{93.99}{92.100}\)
\(\Rightarrow\frac{2.8}{1.9}.\frac{3.9}{2.10}.\frac{4.10}{3.11}...\frac{93.99}{92.100}=\frac{\left(2.3.4...93\right)\left(8.9.10...9\right)}{\left(1.2.3...92\right)\left(9.10.11...100\right)}=\frac{93.8}{1.100}=\frac{186}{25}\)