Tính giá trị biểu thức
\(A=\frac{2^{12}.27^3}{6^7.16^2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=\dfrac{2^{19}\cdot3^9-3\cdot3^8\cdot2^{18}\cdot5}{2^{19}\cdot3^9+2^{20}\cdot3^{10}}=\dfrac{-3^{10}\cdot2^{18}}{2^{19}\cdot3^9\cdot7}=-\dfrac{3}{14}\)
a) Ta có : 2 + 4 + 6 + 8 +... + 16 + 18
SSH : (18 - 2) : 2 + 1 = 9(số)
Tổng : (2 + 18).9 : 2 = 90
\(A=\frac{27\cdot45+27\cdot45}{90}=\frac{27\left(45+45\right)}{90}=\frac{27\cdot90}{90}=27\)
b) Ta có : 135.1420 + 45.780.3 = 135.1420 + 135.780 = 135(1420 + 780) = 135.2200 (*)
3 + 6 + 9 + 12 + ... + 24 + 27
Số số hạng : (27 - 3) : 3 + 1 = 9(số)
Tổng : (3 + 27).9 : 2 = 135 (**)
Từ (*) và (**) suy ra
=> \(B=\frac{135\cdot2200}{135}=2200\)
a)
2 + 4 + 6 + ... + 16 + 18
Số số hạng :
( 18 - 2 ) / 2 + 1 = 9
Tổng :
( 18 + 2 ) x 9 / 2 = 90
\(A=\frac{27\cdot45+27\cdot45}{90}\)
\(=\frac{27\left(45+45\right)}{90}\)
\(=\frac{27\cdot90}{90}\)
\(=27\)
b)
3 + 6 + 9 + 12 + ... + 24 + 27
Số số hạng :
( 27 - 3 ) / 3 + 1 = 9
Tổng :
( 27 + 3 ) x 9 /2 = 135
\(B=\frac{135\cdot1420+45\cdot780\cdot3}{135}\)
\(=\frac{135\cdot1420+135\cdot780}{135}\)
\(=\frac{135\left(1420+780\right)}{135}\)
\(=\frac{135\cdot2200}{135}\)
= 2200
\(\frac{3^7.16^3}{12^5.27^2}=\frac{3^7.\left(2^4\right)^3}{\left(2^2.3\right)^5.\left(3^3\right)^2}=\frac{3^7.2^{12}}{2^{10}.3^5.3^6}=\frac{3^7.2^{12}}{2^{10}.3^{11}}=\frac{2^2}{3^4}=\frac{4}{81}\)
\(\frac{2^{19}.27^3+15^4.4^9.9^4}{6^9.2^{10}+12^{10}}\)
\(=\frac{2^{19}.\left(3^3\right)^3+\left(3.5\right)^4.\left(2^2\right)^9.\left(3^2\right)^4}{\left(2.3\right)^9.2^{10}+\left(2^2.3\right)^{10}}\)
\(=\frac{2^{19}.3^9+3^{12}.5^4.2^{18}}{2^{19}.3^9+2^{20}.3^{10}}\)
\(=\frac{2^{18}.3^9.\left(2+3^3+5^4\right)}{2^{19}.3^9.\left(1+2+3\right)}\)
\(=\frac{654}{2.6}\)
\(=\frac{109}{2}\)
Chúc bn học tốt !!!!
Ta có:
\(\frac{2^{20}\cdot27^3+30\cdot4^9\cdot9^4}{6^9\cdot4^5+12^{10}}=\frac{2^{20}\cdot\left[3^3\right]^3+2\cdot3\cdot5\cdot\left[2^2\right]^9\cdot\left[3^2\right]^4}{2^9\cdot3^9\cdot\left[2^2\right]^5+3^{10}\cdot\left[2^2\right]^{10}}=\frac{2^{20}\cdot3^{3\cdot3}+2\cdot3\cdot5\cdot2^{2\cdot9}\cdot3^{2\cdot4}}{2^9\cdot3^9\cdot2^{2\cdot5}+3^{10}\cdot2^{2\cdot10}}\)
\(=\frac{2^{20}\cdot3^9+2\cdot3\cdot5\cdot2^{18}\cdot3^8}{2^9\cdot3^9\cdot2^{10}+3^{10}\cdot2^{20}}=\frac{2^{20}\cdot3^9+2^{19}\cdot3^9\cdot5}{2^{19}\cdot3^9+3^{10}\cdot2^{20}}=\frac{2^{19}\cdot3^9\left[2+5\right]}{2^{19}\cdot3^9\left[1+3\cdot2\right]}=\frac{2+5}{1+6}=\frac{7}{7}=1\)
\(\begin{array}{l}a)\frac{{{3^{12}} + {3^{15}}}}{{1 + {3^3}}}\\ = \frac{{{3^{12}} + {3^{12}}{{.3}^3}}}{{1 + {3^3}}}\\ = \frac{{{3^{12}}.(1 + {3^3})}}{{1 + {3^3}}}\\ = {3^{12}}\\b)2:{\left( {\frac{1}{2} - \frac{2}{3}} \right)^2} + 0,{125^3}{.8^3} - {( - 12)^4}:{6^4}\\ = 2:{\left( {\frac{3}{6} - \frac{4}{6}} \right)^2} + {(0,125.8)^3} - {12^4}:{6^4}\\ = 2:{\left( {\frac{{ - 1}}{6}} \right)^2} + {1^3} - {(\frac{{12}}{6})^4}\\ = 2:\frac{1}{{36}} + 1 - {2^4}\\ = 2.36 + 1 - 16\\ = 72 + 1 - 16=57\end{array}\)
\(A=\frac{2^{12}.27^3}{6^7.16^2}=\frac{2^{12}.\left(3^3\right)^3}{2^7.3^7.\left(2^4\right)^2}=\frac{2^{12}.3^9}{2^7.3^7.2^8}=\frac{2^{12}.3^9}{2^{15}.3^7}=\frac{1.3^2}{2^3.1}=\frac{9}{8}\)
\(A=\frac{2^{12}\cdot27^3}{6^7\cdot16^2}\)
\(A=\frac{4096\cdot19683}{279936\cdot256}\)
\(A=\frac{80621568}{71663616}\)