Tìm các số tự nhiên a,b,c đồng thời thoả mãn ba điều kiện : a<b<c ; 6<a<10 ; 8<c<11
lẹ nha mình đang cần gấp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a có:
6<a<106<a<10
⇒a∈{7;8;9}⇒a∈{7;8;9}
8<c<118<c<11
⇒c∈{9;10}⇒c∈{9;10}
+) Nếu a=7a=7
⇒7<8<9⇒7<8<9
⇒a=7;b=8;c=9⇒a=7;b=8;c=9
+) Nếu a=8a=8
⇒8<9<10⇒8<9<10
⇒a=8;b=9;c=10⇒a=8;b=9;c=10
+) Nếu a=9a=9
⇒9<10<11⇒9<10<11
⇒⇒ Không thỏa mãn vì c<11c<11
Vậy: (a=8,b=9,c=10);(a=7;b=8;c=9)
Từ điều kiện 91≤a≤93 và a ∈ ¥ ta suy ra: a ∈ {91;92;93}
Từ điều kiện 91<c<94 và c ∈ ¥ ta suy ra: c ∈ {92;93}
Mặt khác, a<b<c (b là số tự nhiên) nên a = 91; b = 92; c = 93
Xin lỗi nhé!
Áp dụng BĐT ta có:
`a^2+9>=6a`
`b^2+25>=10b`
`c^2+4>=4a`
`=>a^2+b^2+c^2+38>=6a+10b+4c`
`<=>76>=6a+10b+4c(1)`
Ta có:
`6a+10b+4c`
`=6(a+b)+4(b+c)`
`=48+4(b+c)>=48+4.7=76(2)`
`(1)(2)=>6a+10b+4c=76`
`<=>a=3,b=5,c=2`
Do \(a^2+b^2+c^2=38\Rightarrow\left|b\right|\le\sqrt{38}< 7\)
\(\Rightarrow c\ge7-b>0\)
\(\Rightarrow c^2\ge\left(7-b\right)^2\)
Do đó:
\(38=\left(8-b\right)^2+b^2+c^2\ge\left(8-b\right)^2+b^2+\left(7-b\right)^2\)
\(\Leftrightarrow5\left(b-5\right)^2\le0\)
\(\Leftrightarrow b=5\Rightarrow a=3;c=2\)
\(11< a< 15\)
\(\Rightarrow a=\left\{12;13;14\right\}\)
\(12< c< 15\)
\(\Rightarrow c=\left\{13;14\right\}\)
\(a< b< c\)
\(\Rightarrow a=12,b=13,c=14\)
Ta có: 11 < a < 15
=> a \(\in\left\{12;13;14\right\}\)
12 < c < 15
Mà a < b < c
=> a = 12 ; b = 13 ; c = 14
Giải:
Ta biết: \(\dfrac{11}{17}< \dfrac{a}{b}< \dfrac{23}{29}\) và \(8b-9a=31\) \(\left(a;b\in N\right)\)
Theo đề bài: \(8b-9a=31\)
\(\Rightarrow b=\dfrac{31+9a}{8}=\dfrac{32-1+8a+a}{8}=\left[\left(4+a\right)+\dfrac{a-1}{8}\right]\in N\)
\(\Leftrightarrow\dfrac{a-1}{8}\in N\)
\(\Leftrightarrow\left(a-1\right)⋮8\)
\(\Leftrightarrow a=8k+1\left(k\in N\right)\)
Khi đó:
\(b=\dfrac{31+9.\left(8k+1\right)}{8}=9k+5\)
\(\Rightarrow\dfrac{11}{17}< \dfrac{8k+1}{9k+5}< \dfrac{23}{29}\)
\(\Leftrightarrow\left\{{}\begin{matrix}11.\left(9k+5\right)< 17.\left(8k+1\right)\Leftrightarrow k>1\\29.\left(8k+1\right)< 23.\left(9k+5\right)\Leftrightarrow k< 4\end{matrix}\right.\)
\(\Rightarrow1< k< 4\)
\(\Rightarrow k\in\left\{2;3\right\}\)
Với \(\left[{}\begin{matrix}k=2\Rightarrow\left\{{}\begin{matrix}a=17\\b=23\end{matrix}\right.\\k=3\Rightarrow\left\{{}\begin{matrix}a=25\\b=32\end{matrix}\right.\end{matrix}\right.\)
Vậy \(\left(a;b\right)=\left(17;23\right);\left(25;32\right)\)
Các số tự nhiên a,b,c thỏa mãn ba điều kiện trên là :
nếu a = 7 thì b = 8 ; c = 9
còn nếu a = 8 thì b = 9 ; c = 10
t mk nha bn^^