Cho ΔMNP vuông tại M, N=600 , vẽ phân giác NI (I thuộc MP) kẻ IK vuông NP.
a/ Chứng minh MI=IK.
b/ Chứng minh △MNK đều.
c/ Cho MN=12cm. Tính NP.
mọi người giúp em với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét hai tam giác vuông: ∆IMN và ∆IKN có:
IN chung
MNI = KNI (do NI là phân giác của ∠MNP)
⇒ ∆IMN = ∆IKN (cạnh huyền - góc nhọn)
b) ∆IKP vuông tại K
IP là cạnh huyền nên IP lớn nhất
IK < IP (1)
Do ∆IMN = ∆IKN (cmt)
⇒ MI = IK (2)
Từ (1) và (2)⇒ MI < IP
c) Xét hai tam giác vuông: ∆IKP và ∆IMQ có:
IM = IK (cmt)
∠PIK = ∠MIQ (đối đỉnh)
∆IKP = ∆IMQ (cạnh góc vuông - góc nhọn kề)
⇒ KP = MQ (hai cạnh tương ứng) (3)
Do ∆IMN = ∆IKN (cmt)
⇒ MN = KN (hai cạnh tương ứng) (4)
Từ (3) và (4) ⇒ KN + KP = MN + MQ
NP = NQ
⇒ ∆NPQ cân tại N
Lại có NI là phân giác của ∠MNP
⇒ NI là phân giác của ∠QNP
⇒ NI cũng là đường cao của ∆NPQ (tính chất tam giác cân)
⇒ ND ⊥ QP
a) Áp dụng định lí pi-ta-go vào \(\Delta MNK\)vuông tại M có:
\(NK^2=NM^2+MK^2\Rightarrow NK^2=9^2+12^2\Rightarrow NK=15\)
b) Xét \(\Delta NMK\)vuông tại M và \(\Delta IMK\)vuông tại M có:
MK chung
NM=IM (gt)
\(\Rightarrow\Delta MNK=\Delta IMK\left(cgv-cgv\right)\)
\(\Rightarrow\widehat{NKM}=\widehat{IKM}\)hay \(\widehat{AKM}=\widehat{BKM}\)
Xét \(\Delta MAK\)vuông tại A và \(\Delta MBK\)vuông tại B có:
\(\widehat{AKM}=\widehat{BKM}\)(c/m trên)
MK chung
\(\Rightarrow\Delta MAK=\Delta MBK\left(ch-gn\right)\)
c) Vì \(\Delta MAK=\Delta MBK\)
\(\Rightarrow AK=BK\Rightarrow\Delta ABK\)cân tại K
\(\Rightarrow\widehat{KAB}=\widehat{KBA}\)
Áp dụng tính chất tổng 3 góc trong 1 tam giác có:
\(\widehat{KAB}+\widehat{KBA}+\widehat{NKI}=180^o\)
\(\Rightarrow\widehat{KAB}=\frac{180^o-\widehat{NKI}}{2}\left(1\right)\)
tới đây bn tự làm tiếp
a: Xét ΔHNM vuông tại H và ΔMNP vuông tại M có
góc N chung
=>ΔHMN đồng dạng vói ΔMNP
b: \(NP=\sqrt{9^2+12^2}=15\left(cm\right)\)
MH=9*12/15=108/15=7,2cm
HP=12^2/15=9,6cm
S MHP=1/2*9,6*7,2=34,56cm2
1: Xét ΔNMI vuông tại M và ΔNKI vuông tại K có
NI chung
\(\widehat{MNI}=\widehat{KNI}\)
Do đó: ΔNMI=ΔNKI
Suy ra: NM=NK
hay ΔNMK cân tại N
2: Xét ΔMIQ vuông tại M và ΔKIP vuông tại K có
IM=IK
\(\widehat{MIQ}=\widehat{KIP}\)
Do đó: ΔMIQ=ΔKIP
Suy ra: MQ=KP
Ta có: NM+MQ=NQ
NK+KP=NP
mà NM=NK
và MQ=KP
nên NQ=NP
hayΔNQP cân tại N
3: Xét ΔNQP có
NM/MQ=NK/KP
nên MK//QP
a) Xét tam giác PNK vuông tại P và tam giác INK vuông tại I có:
\(\widehat{N}=\widehat{K}\)(tam giác MNK là tam giác cân)
NK:chung
Suy ra \(\Delta PNK=\Delta INK\)(cạnh huyền-góc nhọn)
=>PN=IK(1)
Mà do MNK cân tại M nên MN=MK(2)
Từ (1) và (2), suy ra MI=MP
b)Từ a) ta suy ra: \(\widehat{HNK}=\widehat{HKN}\)(hai góc tương ứng)<=> \(\widehat{IKH}=\widehat{PNH}\)
Xét tam giác PHN vuông tại P và tam giác IHK vuông tại I có:
\(NP=IK\left(cmt\right)\)
\(\widehat{IKH}=\widehat{PNH}\)(cmt)
Suy ra:....(cạnh góc vuông-góc nhọn kề)
=>HP=HI
Xét tam giác PMH và tam giác HMI có:
MH:chung
MP=MI(cmt)
HP=HI(cmt)
Suy ra:....(c-c-c)
=> \(\widehat{PMH}=\widehat{IMH}\)(hai góc tương ứng )
=>MH là tia phân giác của góc M
c) Từ b) suy ra MP=MI(2 cạnh tương ứng)
=>PMI là tam giác cân
Xét tam giác PMI có:
\(\widehat{P}=\widehat{I}=\frac{180^o-\widehat{M}}{2}\left(1\right)\)
Xét tam giác MNK có:
\(\widehat{K}=\widehat{N}=\frac{180^o-\widehat{M}}{2}\left(2\right)\)
=>\(\widehat{K}=\widehat{N}=\widehat{P}=\widehat{I}\)
Mà các cặp góc này ở vị trí đồng vị nên PI//NK
1: Xét ΔNMI vuông tại M và ΔNKI vuông tại K có
NI chung
\(\widehat{MNI}=\widehat{KNI}\)
Do đó: ΔNMI=ΔNKI
Suy ra: NM=NK
hay ΔNMK cân tại N
2: Xét ΔMIQ vuông tại M và ΔKIP vuông tại K có
IM=IK
\(\widehat{MIQ}=\widehat{KIP}\)
Do đó: ΔMIQ=ΔKIP
Suy ra: MQ=KP
Ta có: NM+MQ=NQ
NK+KP=NP
mà NM=NK
và MQ=KP
nên NQ=NP
hayΔNQP cân tại N
3: Xét ΔNQP có
NM/MQ=NK/KP
nên MK//QP
a: Xét ΔMIN vuông tại I và ΔMIP vuông tại I có
MN=MP
MI chung
=>ΔMIN=ΔMIP
b: Xét ΔMEI vuông tại E và ΔMFI vuông tại F có
MI chung
góc EMI=góc FMI
=>ΔMEI=ΔMFI
=>ME=MF
IN=IP=6/2=3cm
=>MI=4cm
a: NK=15cm
b: Xét ΔKNI cso
KM là đường cao
KM là đường trung tuyến
DO đó: ΔKNI cân tại K
c: Xét ΔMAK vuông tại A và ΔMBK vuông tại B có
MK chung
\(\widehat{AKM}=\widehat{BKM}\)
Do đó: ΔMAK=ΔMBK
d: Xét ΔKIN có KB/KI=KA/KN
nên AB//IN
a) xét △KNI ⊥ tại K và △MNI ⊥ tại M có:
∠N1 = ∠N2 ( NI là đường phân giác của △MNP )
NI là cạnh chung
⇒ △KNI = △MNI ( cạnh huyền - góc nhọn )
⇒ KI = MI ( 2 cạnh bằng nhau )
b,c) Xin lỗi bạn mình ko biết . mình quên mất kiến thức rồicó gì thì để bạn khác rả lời nhé❗ 3❤❤❤❤