K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
20 tháng 3 2022

- Với \(x< 0\Rightarrow2^x\notin Z\Rightarrow2^x+7\notin Z\) pt vô nghiệm

- Với \(x=0\) ko thỏa mãn

- Với \(x=1\Rightarrow y=\pm3\)

- Với \(x>1\Rightarrow2^x+7\) luôn lẻ \(\Rightarrow y^2\) lẻ \(\Rightarrow y\) lẻ \(\Rightarrow y=2k+1\)

\(\Rightarrow2^x+7=\left(2k+1\right)^2\)

\(\Rightarrow2^x+6=4k\left(k+1\right)\)

\(\Rightarrow4k\left(k+1\right)-2^x=6\)

Do \(x>1\Rightarrow2^x⋮4\Rightarrow4k\left(k+1\right)-2^x⋮4\) trong khi \(6⋮̸4\)

\(\Rightarrow\) Ko tồn tại x;k thỏa mãn

Vậy \(\left(x;y\right)=\left(1;-3\right);\left(1;3\right)\)

NV
25 tháng 8 2021

\(\Leftrightarrow3\left(x^2-2\right)=\left(y+1\right)^2\)

\(3\left(x^2-2\right)⋮3\Rightarrow y+1⋮3\Rightarrow\left(y+1\right)^2⋮9\)

\(\Rightarrow x^2-2⋮3\) (vô lý do \(x^2\) chia 3 luôn dư 0 hoặc 1)

Vậy pt đã cho vô nghiệm

22 tháng 6 2023

\(\left(x^2+y\right)\left(x+y^2\right)=\left(x+y\right)^3\)

\(\Leftrightarrow x^3+x^2y^2+xy+y^3=x^3+y^3+3xy\left(x+y\right)\)

\(\Leftrightarrow xy\left(xy+1\right)=3xy\left(x+y\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}xy=0\\xy+1=3\left(x+y\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\y=0\\xy-3x-3y+1=0\end{matrix}\right.\)

 TH1: \(x=0\) thì thay vào pt đề bài, suy ra điều luôn đúng với mọi số nguyên \(x\). Hơn nữa do vai trò \(x,y\) như nhau nên tương tự với trường hợp \(y=0\) 

 TH2: \(xy-3x-3y+1=0\)

\(\Leftrightarrow x\left(y-3\right)-3\left(y-3\right)=8\)

\(\Leftrightarrow\left(x-3\right)\left(y-3\right)=8\)

Từ đó ta có bảng:

\(x-3\) 1 8 2 4 -1 -8 -2 -4
\(y-3\) 8 1 4 2 -8 -1 -4 -2
\(x\) 4 11 5 7 2 -5 1 -1
\(y\) 11 4 7 5 -5 2 -1 1

Như vậy trong trường hợp này, ta tìm ra được các nghiệm \(\left(4;11\right);\left(11;4\right);\left(5;7\right);\left(7;5\right);\left(2;-5\right);\left(-5;2\right);\left(1;-1\right);\left(-1;1\right)\)

Tóm lại, ta tìm được các nghiệm nguyên sau của pt đã cho:

\(\left(4;11\right);\left(11;4\right);\left(5;7\right);\left(7;5\right);\left(2;-5\right);\left(-5;2\right);\left(1;-1\right);\left(-1;1\right)\)\(\left(0;y\right),\forall y\inℤ\) và \(\left(x;0\right),\forall x\inℤ\)

20 tháng 7 2021

\(4x^2=4y^6-4y^3\)

\(\Leftrightarrow4y^6-4y^3+1-4x^2=1\)

\(\Leftrightarrow\left(2y^3-1\right)^2-4x^2=1\)

\(\Leftrightarrow\left(2y^3-1-2x\right)\left(2y^3-1+2x\right)=1\)

13 tháng 3 2021

\(PT\Leftrightarrow y\left(x^2-2x-1\right)=x^2+2x-1\).

Từ đó \(x^2-2x-1\vdots x^2+2x-1\)

\(\Leftrightarrow4x⋮x^2+2x-1\) (1)

\(\Rightarrow4\left(x^2+2x-1\right)-4x^2⋮x^2+2x-1\)

\(\Leftrightarrow8x-4⋮x^2+2x-1\) (2)

Từ (1), (2) suy ra \(8⋮x^2+2x-1\).

Đến đây bạn xét TH.

 

 

 

 

 

13 tháng 1 2017

a)

\(\Leftrightarrow yz=z^2+2z+3\Leftrightarrow z\left(y-2-z\right)=3\)

\(\hept{\begin{cases}z=\left\{-3,-1,1,3\right\}\\y-2-z=\left\{-1,-3,3,1\right\}\end{cases}\Rightarrow\hept{\begin{cases}x=\left\{-2,0,2,4\right\}\\y=\left\{-2,-4,6,6\right\}\end{cases}}}\)

14 tháng 7 2021

\(x^3+y^3=5+x^2y+xy^2\Rightarrow x^3+y^3-\left(x^2y+xy^2\right)=5\)

\(\Rightarrow\left(x+y\right)\left(x^2-xy+y^2\right)-xy\left(x+y\right)=5\)

\(\Rightarrow\left(x+y\right)\left(x-y\right)^2=5\)

Vì \(\left\{{}\begin{matrix}\left(x-y\right)^2\ge0\\5>0\end{matrix}\right.\Rightarrow x+y>0\)

Lại có \(\left\{{}\begin{matrix}\left(x-y\right)^2\in N\\\left(x-y\right)^2< 5\end{matrix}\right.\) và \(\left(x-y\right)^2\) là số chính phương

\(\Rightarrow\left(x-y\right)^2=1\Rightarrow\left\{{}\begin{matrix}x+y=5\\x-y=1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=3\\y=2\end{matrix}\right.\)

14 tháng 7 2021

Vì sao \(\left(x-y\right)^2< 5\) vậy bạn? Nếu nó =5 thì sao ạ? Cảm ơn ạ.

19 tháng 12 2017

đặt 2 cái trong ngoặc kia là a và b, phân tích đa thức thành nhân tử ở VT

rồi chuyển sang cứ tạo thành hhằng đẳng thức rồi nhóm các nhân tử còn lại chia thành 2 nhóm và úc đó thay a,b theo x, y vào ,...

19 tháng 12 2017

làm cho mk luôn đi bạn