K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 9 2021

\(x^2\left(x+4\right)^2-\left(x+4\right)^2-\left(x^2-1\right)\\ =\left(x+4\right)^2\left(x^2-1\right)-\left(x^2-1\right)\\ =\left(x^2-1\right)\left[\left(x+4\right)^2-1\right]\\ =\left(x-1\right)\left(x+1\right)\left(x+4-1\right)\left(x+4+1\right)\\ =\left(x-1\right)\left(x+1\right)\left(x+3\right)\left(x+5\right)\)

1 tháng 9 2021

\(= (x+4)^2(x^2-1)-(x^2-1)=[(x+4)^2-1](x^2-1)\)

\(=(x+4-1)(x+4+1)(x-1)(x+1)\)

\(=(x+3)(x+5)(x-1)(x+1)\)

2 tháng 9 2021

x2-2x-15=(x2-5x)+(3x-15)=x(x-5)+3(x-5)=(x-5)(x+3)

2 tháng 9 2021

Bạn ghi lộn đề rồi bạn phải là 3x chứ ko phải là 2x.

4 tháng 9 2021

(1 + x2)2 - 4x(1 - x2)

= (1 + x2)(1 + x2) - 4x(1 - x2)

= (1 + x2 - 4x)(1 + x2 - 1 + x2)

= 2x2(x2 - 4x + 1)

Ta có: \(\left(x^2+1\right)^2+4x\left(x^2-1\right)\)

\(=x^4+2x^2+1+4x^3-4x\)

\(=x^4+2x^3+2x^3+4x^2-2x^2-4x+1\)

\(=\left(x+2\right)\left(x^3+2x^2-2x\right)+1\)

4 tháng 9 2021

\(=\left(x^2+5x+8\right)\left(x^2+4x+2x+8\right)=\left(x^2+5x+8\right)\left[x\left(x+4\right)+2\left(x+4\right)\right]\)

\(=\left(x^2+5x+8\right)\left(x+2\right)\left(x+4\right)\) 

4 tháng 9 2021

\(\left(x^2+4x+8\right)^2+3x\left(x^2+4x+8\right)+2x^2=\left(x^2+4x+8\right)^2+2x\left(x^2+4x+8\right)+x\left(x^2+4x+8\right)+2x^2\)

\(=\left(x^2+4x+8\right)\left(x^2+4x+8+2x\right)+x\left(x^2+4x+8+2x\right)\)

\(=\left(x^2+4x+8\right)\left(x^2+6x+8\right)+x\left(x^2+6x+8\right)\)

\(=\left(x^2+4x+8+x\right)\left(x^2+6x+8\right)=\left(x^2+5x+8\right)\left(x^2+6x+8\right)\)

4 tháng 9 2021

x2-2xy+y2+3x-3y-10

= (x-y)2+3(x-y)-10

= [(x-y)2+5(x-y)]-[2(x-y)+10]

= (x-y)(x-y+5)-2(x-y+5)

= (x-y+5)(x-y-2)

Ta có: \(x^2-2xy+y^2+3x-3y-10\)

\(=\left(x-y\right)^2+3\left(x-y\right)-10\)

\(=\left(x-y+5\right)\left(x-y-2\right)\)

4 tháng 9 2021

\(\left(x^2-3x\right)^2-14x^2+42x+40\\ =\left(x^2-3x-7\right)^2-9\\ =\left(x^2-3x-10\right)\left(x^2-3x-4\right)\)

4 tháng 9 2021

nếu e cần thì để chj làm rõ các bước nhé:)

1 tháng 9 2021

a)\(5x^2-4\left(x^2-2x+1\right)-5=5\left(x^2-1\right)-4\left(x-1\right)^2=5\left(x-1\right)\left(x+1\right)-4\left(x-1\right)^2=\left(x-1\right)\left(5x+5-4x+4\right)=\left(x-1\right)\left(x+9\right)\)

b) \(9x^2+6x-4y^2+4y=\left(9x^2+6x+1\right)-\left(4y^2-4y+1\right)=\left(3x+1\right)^2-\left(2y-1\right)^2=\left(3x+1-2y+1\right)\left(3x+1+2y-1\right)=\left(3x-2y+2\right)\left(3x+2y\right)\)

a: \(5x^2-4\left(x^2-2x+1\right)-5\)

\(=5x^2-4x^2+8x-4-5\)

\(=x^2+8x-9\)

\(=\left(x+9\right)\left(x-1\right)\)

b: \(9x^2+6x-4y^2+4y\)

\(=\left(3x+2y\right)\left(3x-2y\right)+2\left(3x+2y\right)\)

\(=\left(3x+2y\right)\left(3x-2y+2\right)\)

4 tháng 9 2021

\(\left(x^2+6x-1\right)^2+2x^2+x^4+2\left(x^2+6x-1\right)\left(x^2+1\right)\)

\(\left(x^2+6x-1\right)^2+2\left(x^2+6x-1\right)\left(x^2+1\right)+\left(x^2+1\right)^2-1=\left(x^2+6x-1+x^2+1\right)^2-1=\left(2x^2+6x\right)^2-1=\left(2x^2+6x-1\right)\left(2x^2+6x+1\right)\)

\(\left(x^2+6x-1\right)^2+2\left(x^2+6x-1\right)\left(x^2+1\right)+x^4+2x^2\)

\(=\left(x^2+6x-1\right)\left(x^2+6x-1+2x^2+2\right)+x^4+2x^2\)

\(=\left(x^2+6x-1\right)\left(3x^2+6x+1\right)+x^4+2x^2\)

\(=\left(2x^2+6x-1\right)\left(2x^2+6x+1\right)\)

4 tháng 9 2021

\(4\left(x^2+15x+50\right)\left(x^2+18x+72\right)-3x^2\\ =4\left(x+5\right)\left(x+10\right)\left(x+6\right)\left(x+12\right)-3x^2\\ =4\left(x^2+16x+60\right)\left(x^2+17x+60\right)-3x^2\)

Đặt \(x^2+16x+60=a\)

\(=4a\left(a+x\right)-3x^2\\ =4a^2+4ax-3x^2\\ =\left(2a-x\right)\left(2a+3x\right)\\ =\left[2\left(x^2+16x+60\right)-x\right]\left[2\left(x^2+16x+60\right)+3x\right]\\ =\left(2x^2+31x+120\right)\left(2x^2+35x+120\right)\)

12 tháng 5 2023

(x2+15x+50)(x2+18x+72)−3x2=4(x+5)(x+10)(x+6)(x+12)−3x2=4(x2+16x+60)(x2+17x+60)−3x24(�2+15�+50)(�2+18�+72)−3�2=4(�+5)(�+10)(�+6)(�+12)−3�2=4(�2+16�+60)(�2+17�+60)−3�2

Đặt x2+16x+60=a�2+16�+60=�

=4a(a+x)−3x2=4a2+4ax−3x2=(2a−x)(2a+3x)=[2(x2+16x+60)−x][2(x2+16x+60)+3x]=(2x2+31x+120)(2x2+35x+120)

4 tháng 9 2021

\(x^2-x-2020.2021=x^2+2020x-2021x-2020.2021=x\left(x+2020\right)-2021\left(x+2020\right)=\left(x+2020\right)\left(x-2021\right)\)

\(x^2-x-2020\cdot2021\)

\(=\left(x-2021\right)\left(x+2020\right)\)