Phân tích các đa thức sau thành nhân tử :
a) 3x2 – 7x + 2;
Nhanh nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. 3x2– 7x + 2 = 3x2 – 6x – x + 2
= 3x(x -2) – (x - 2)
= (x - 2)(3x - 1)
b. a(x2 + 1) – x(a2 + 1) = ax2 + a – a2x – x
= ax(x - a) – (x - a)
= (x - a)(ax - 1)
a) \(3x^2-7x+2=3x^2-x-6x+2=x\left(3x-1\right)-2\left(3x-1\right)=\left(3x-1\right)\left(x-2\right)\)
b) \(a\left(x^2+1\right)-x\left(a^2+1\right)=\left(a^2+1\right)\left(a-x\right)\)
Lời giải:
a. $3x^2-9x=3x(x-3)$
b. $4x^2+7y-4xy-7x=(4x^2-4xy)-(7x-7y)=4x(x-y)-7(x-y)=(x-y)(4x-7)$
a) x3 + 3x2 – 3x – 9
= (x3 + 3x2) - (3x + 9)
= x2(x + 3) - 3(x + 3)
= (x + 3)(x2 - 3)
= (x + 3)(x + √3)(x - √3)
a) \(x^2+5x+4==x\left(x+1\right)+4\left(x+1\right)=\left(x+1\right)\left(x+4\right)\)
b) \(3x^2+4x-7=3x\left(x-1\right)+7\left(x-1\right)=\left(x-1\right)\left(3x+7\right)\)
c) \(x^2+7x+12=x\left(x+3\right)+4\left(x+3\right)=\left(x+3\right)\left(x+4\right)\)
1a) \(=-\left(x^3-3x^2+3x-1\right)=-\left(x-1\right)^3\)
b) \(=-\left(x^3-3x^2+3x-1\right)=-\left(x-1\right)^3\)
\(a,=-\left(x-1\right)^3\left[=\left(1-x\right)^3\right]\\ b,=\left(1-x\right)^3\)
\(a,=\left(x+1\right)\left(x+3\right)\\ b,=-5x^2+15x+x-3=\left(x-3\right)\left(1-5x\right)\\ c,=2x^2+2x+5x+5=\left(2x+5\right)\left(x+1\right)\\ d,=2x^2-2x+5x-5=\left(x-1\right)\left(2x+5\right)\\ e,=x^3+x^2-4x^2-4x+x+1=\left(x+1\right)\left(x^2-4x+1\right)\\ f,=x^2+x-5x-5=\left(x+1\right)\left(x-5\right)\)
\(2x^2-7x+5=\left(2x^2-2x\right)-\left(5x-5\right)=2x\left(x-1\right)-5\left(x-1\right)=\left(2x-5\right)\left(x-1\right)\)
\(3x^2+5x+2=\left(3x^2+3x\right)+\left(2x+2\right)=3x\left(x+1\right)+2\left(x+1\right)=\left(3x+2\right)\left(x+1\right)\)
a: \(2x^2-7x+5=\left(x-1\right)\left(2x-5\right)\)
b: \(3x^2+5x+2=\left(x+1\right)\left(3x+2\right)\)
a) \(A=x^2-6x+9-9y^2\)
\(=\left(x-3\right)^2-\left(3y\right)^2\)
\(=\left(x-3-3y\right)\left(x-3+3y\right)\)
b) \(B=x^3-3x^2+3x-1+2\left(x^2-1\right)\)
\(=\left(x-1\right)^3+\left(2x+2\right)\left(x-1\right)\)
\(=\left(x-1\right)\left[\left(x-1\right)^2+2x+2\right]\)
\(=\left(x-1\right).\left(x^2+3\right)\)
a, \(A=\left(x-3\right)^2-9y^2=\left(x-3-3y\right)\left(x-3+3y\right)\)
b, \(B=\left(x-1\right)^3+2\left(x-1\right)\left(x+1\right)=\left(x-1\right)\left[\left(x-1\right)^2+2\left(x+1\right)\right]\)
\(=\left(x-1\right)\left(x^2-2x+1+2x+2\right)=\left(x-1\right)\left(x^2+3\right)\)
\(3x^2-7x+2=3x^2-6x-x+2=3x\left(x-2\right)-\left(x-2\right)=\left(x-2\right)\left(3x-1\right)\)
bằng phương pháp nào bn??? 565747556756765765756785685687357634634645756876876