K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(A=3\times\left(1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{101}-\frac{1}{105}\right)\)

\(A=3\times\left(1-\frac{1}{105}\right)\)

\(A=3\times\frac{104}{105}\)

\(A=\frac{104}{35}\)

3 tháng 4 2017

\(A=3.\left(1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{101}-\frac{1}{105}\right)\)

\(A=3.\left(1-\frac{1}{105}\right)\)

\(A=3.\frac{104}{105}\)

\(A=\frac{104}{35}\)

3 tháng 4 2017

Em yêu cầu bác nhìn xuống dưới và bác sẽ biết cách làm 

Bác thấy rồi mà còn đăng

Thay số mà làm nhé

:))

31 tháng 1 2016

cậu nhâ n cả 2 vế của C với 4 / 5 ý ra lu n ak

31 tháng 1 2016

\(C=\frac{5}{1.5}+\frac{5}{5.9}+\frac{5}{9.13}+...+\frac{5}{101.105}\)

\(C=5.\left(\frac{1}{1.5}+\frac{1}{5.9}+\frac{1}{9.13}+...+\frac{1}{101.105}\right)\)

\(C=5.\frac{1}{4}.\left(1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+....+\frac{1}{101}-\frac{1}{105}\right)\)

\(C=\frac{5}{4}.\left(1-\frac{1}{105}\right)\)

\(C=\frac{5}{4}.\frac{104}{105}\)

\(C=\frac{26}{21}\)

7 tháng 3 2017

\(\frac{3}{1.5}+\frac{3}{5.9}+\frac{3}{9.13}+......+\frac{3}{21.25}\)

\(=\frac{3}{4}\left(\frac{4}{1.5}+\frac{4}{5.9}+\frac{4}{9.13}+.....+\frac{4}{21.25}\right)\)

\(=\frac{3}{4}\left(1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+......+\frac{1}{21}-\frac{1}{25}\right)\)

\(=\frac{3}{4}\left(1-\frac{1}{25}\right)\)

\(=\frac{3}{4}.\frac{24}{25}\)

\(=\frac{18}{25}\)

7 tháng 3 2017

\(4A=3-\frac{1}{5}+\frac{3}{5}-\frac{3}{9}+\frac{3}{9}-\frac{3}{13}+...+\frac{3}{21}-\frac{3}{25}\)\(\frac{3}{25}\)

\(4A=3-\frac{3}{25}\)

\(4A=\frac{72}{25}\)

\(A=\frac{18}{25}\)

k minh ha

7 tháng 10 2017

A=8/1.5 + 8/5.9 + 8/9.13+ ... +8/25.29

A=2 . (2/1.5 +4/5.9 + 4/9.13 + ...... +4/25.29

A=2.(1-1/5+1/5-1/9+1/9-1/13+...+1/25-1/29

A=2.(1-1/29)

A=2. 28/29

A=56/29

7 tháng 10 2017

mn giải chi tiết ra hộ mình nhé!

22 tháng 7 2015

Chỉ cần để các thừa số ra ngoài rồi nhân các số mà bằng khoảng cách của mẫu lên tử là giải được

3 tháng 4 2017

tôi biết câu này nè

2 tháng 4 2018

a, \(\frac{1}{2}.B=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\)

      \(\frac{1}{2}.B=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\)

         \(\frac{1}{2}.B=1-\frac{1}{101}=\frac{100}{101}\)

                  \(B=\frac{100}{101}.2=\frac{200}{101}\)

b, \(\frac{4}{5}.C=\frac{4}{1.5}+\frac{4}{5.9}+\frac{4}{9.13}+...+\frac{4}{101.105}\)

      \(\frac{4}{5}.C=1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+...+\frac{1}{101}-\frac{1}{105}\)

          \(\frac{4}{5}.C=1-\frac{1}{105}=\frac{104}{105}\)

                 \(C=\frac{104}{105}.\frac{5}{4}=\frac{26}{21}\)

2 tháng 4 2018

\(B=\frac{2}{2}\cdot\left(\frac{4}{1\cdot3}+\frac{4}{3\cdot5}+\frac{4}{5\cdot7}+....+\frac{4}{99\cdot101}\right)\)

\(=\frac{4}{2}\cdot\left(\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{99\cdot101}\right)\)

\(=2\cdot\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\right)\)

\(=2\cdot\left(1-\frac{1}{101}\right)\)

\(=2\cdot\frac{100}{101}\)

\(=1\frac{99}{101}\)

3 tháng 8 2018


\(P=\frac{3}{1.5}+\frac{3}{5.9}+\frac{3}{9.13}+...+\frac{3}{197.201}\)
\(P=\frac{3}{4}.\left(\frac{4}{1.5}+\frac{4}{5.9}+\frac{4}{9.13}+...+\frac{4}{197.201}\right)\)
\(P=\frac{3}{4}.\left(\frac{1}{1}-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}+\frac{1}{13}+...+\frac{1}{197}-\frac{1}{201}\right)\)
\(P=\frac{3}{4}.\left(\frac{1}{1}-\frac{1}{201}\right)\)
\(P=\frac{3}{4}.\left(\frac{201}{201}-\frac{1}{201}\right)\)
\(P=\frac{3}{4}.\frac{200}{201}\)
\(P=\frac{50}{67}\)
 Vậy \(P=\frac{50}{67}\)

\(P=\frac{3}{1\cdot5}+\frac{3}{5\cdot9}+...+\frac{3}{197\cdot201}\)

\(=3\cdot\left(\frac{1}{1\cdot5}+\frac{1}{5\cdot9}+...+\frac{1}{197\cdot201}\right)\)

\(=\frac{3}{4}\cdot\left(\frac{4}{1\cdot5}+\frac{4}{5\cdot9}+...+\frac{4}{197\cdot201}\right)\)

\(=\frac{3}{4}\cdot\left(\frac{1}{1}-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+...+\frac{1}{197}-\frac{1}{201}\right)\)

\(=\frac{3}{4}\cdot\left(\frac{1}{1}-\frac{1}{201}\right)\)

\(=\frac{3}{4}\cdot\left(\frac{201-1}{201}\right)\)

\(=\frac{3}{4}\cdot\frac{200}{201}\)

\(\Rightarrow B=\frac{50}{67}\)

21 tháng 1 2017

3/1*5+3/5*9+3/9*13+.....+3/3993*3997+3/3997*4001

=1/3(1-1/5+1/5-1/9+1/9-1/13+....+1/3993-1/3997+1/3997-1/4001)

=1/3(1-1/4001)

=4000/12003

k nha

20 tháng 4 2017

= 3/4(1-1/5+1/5-1/9+1/9-1/13+...+1/3993-1/3997+1/3997-1/4001)

=3/4(1-1/4001)

=3000/4001