can bac hai cua 2x^2-4x+5=x-4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
\(P=\sqrt{3+2x-x^2}=\sqrt{4-(x^2-2x+1)}=\sqrt{4-(x-1)^2}\)
Vì $(x-1)^2\geq 0$ với mọi $x$ nên $4-(x-1)^2\leq 4$
$\Rightarrow P\leq \sqrt{4}=2$
Vậy $P_{\max}=2$
Giá trị này đạt được tại $x-1=0\Leftrightarrow x=1$
a) f(x)= (x-1)(1-3x) =0
TH1: x-1= 0 => x=1
TH2:1-3X=0=>3x= 1
=>1/3
vậy nghiệm của đa thức f(x)là x=1; x= -1/3
b) g(x)=(2x+1)(x^2+5)=0
TH1: 2x+1=0=> 2x=1 => x=1/2
TH2: x^2+5=0=> x^2= -5(vô lí)
vậy x= 1/2 là nghiệm của đa thức g(x)
c) h(x)= x^3 -4x=0
=>(x^2 - 4)x=0
TH1: x^2 -4=0=>x^2 =4
=>x=\(\sqrt{4}\) =2
TH2: x=0
Vậy x=2; x=0 là nghiệm của đa thức h(x)
d) bn ơi bn viết lại đề phần này nhé mk thấy bn viết hơi rắc rối xíu
''căn bậc hai'' và ''căn bậc hai của 2'' hoàn toàn khác nhau đó bn
\(a,\)\(\sqrt{\left(x-1\right)\left(x-3\right)}\)
\(đkxđ\Leftrightarrow\left(x-1\right)\left(x-3\right)\ge0\)
\(\orbr{\begin{cases}x-1\ge0;x-3\ge0\\x-1< 0;x-3< 0\end{cases}\Rightarrow\orbr{\begin{cases}x\ge1;x\ge3\\x< 1;x< 3\end{cases}\Rightarrow}\orbr{\begin{cases}x\ge3\\x< 1\end{cases}}}\)
\(b,\)\(\sqrt{\frac{4}{x+3}}\)
\(đkxđ\Leftrightarrow\orbr{\begin{cases}x+3\ne0\\x+3\ge0\end{cases}\Rightarrow x+3>0}\)\(\Rightarrow x>-3\)
Ta có : \(\sqrt{x+y}+\sqrt{y+z}+\sqrt{z+x}=1.\sqrt{x+y}+1.\sqrt{y+z}+1.\sqrt{z+x}\)
\(\Rightarrow\left(1.\sqrt{x+y}+1.\sqrt{y+z}+1.\sqrt{z+x}\right)^2\le\left(1^2+1^2+1^2\right)\left(x+y+y+z+z+x\right)=3.2\left(x+y+z\right)=18\)
(Áp dụng bất đẳng thức Bunhiacopxki)
Vậy : Max P = \(3\sqrt{2}\Leftrightarrow\hept{\begin{cases}x+y+z=3\\\sqrt{x+y}=\sqrt{y+z}=\sqrt{z+x}\end{cases}\Leftrightarrow x=y=z=1}\)
áp dụng bất đẳng thức Cô-si cho 2 số dương, ta có:
\(\sqrt{x+y}\)< hoặc =\(\frac{x+y}{2}\)
\(\sqrt{y+z}\)< hoặc =\(\frac{y+z}{2}\)
\(\sqrt{x+z}\)< hoặc =\(\frac{x+z}{2}\)
=>\(\sqrt{x+y}+\sqrt{y+z}+\sqrt{x+z}\)< hoặc =\(\frac{x+y}{2}+\frac{y+z}{2}+\frac{x+z}{2}=x+y+z=3\)
dấu = xảy ra<=>x=y=z
Vậy GTLN của biểu thúc là 3 khi x=y=z
\(\sqrt{2x^2-4x+5}=x-4\left(x\ge4\right)\)
\(\Rightarrow2x^2-4x+5=x^2-8x+16\)
\(\Rightarrow x^2+4x-11=0\)
Có: \(\Delta=4^2-4\left(-11\right)=60>0\Rightarrow\sqrt{\Delta}=2\sqrt{15}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{-4+2\sqrt{15}}{2}=-2+\sqrt{15}\left(l\right)\\x=\frac{-4-2\sqrt{15}}{2}=-2-\sqrt{15}\left(l\right)\end{cases}}\)
Vậy \(x\in\left\{\phi\right\}\)