K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(=\dfrac{a+x+1}{a+x}:\dfrac{a+x-1}{a+x}\cdot\left(\dfrac{2ax-1+a^2+x^2}{2ax}\right)\)

\(=\dfrac{a+x+1}{a+x-1}\cdot\dfrac{\left(a+x\right)^2-1}{2ax}\)

\(=\dfrac{a+x+1}{a+x-1}\cdot\dfrac{\left(a+x+1\right)\left(a+x-1\right)}{2ax}\)

\(=\dfrac{\left(a+x+1\right)^2}{2ax}\)

30 tháng 11 2015

\(a.\) Với  \(a+b+c=0\)  thì  \(\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=\frac{\left(-c\right).\left(-a\right).\left(-b\right)}{abc}=\frac{-abc}{abc}=-1\)

\(b.\)   Công thức tổng quát:  \(\frac{1}{n\left(n+1\right)}=\frac{1}{n}-\frac{1}{n+1}\)

Ta có:

\(\frac{1}{x\left(x+1\right)}=\frac{1}{x}-\frac{1}{x+1}\)

\(\frac{1}{\left(x+1\right)\left(x+2\right)}=\frac{1}{x+1}-\frac{1}{x+2}\)

\(\frac{1}{\left(x+2\right)\left(x+3\right)}=\frac{1}{x+2}-\frac{1}{x+3}\)

\(\frac{1}{\left(x+3\right)\left(x+4\right)}=\frac{1}{x+3}-\frac{1}{x-4}\)

\(\frac{1}{\left(x+4\right)\left(x+5\right)}=\frac{1}{x+4}-\frac{1}{x+5}\)

Do đó, suy ra được:  \(A=\frac{1}{x}-\frac{1}{x+5}=\frac{x+5-x}{x\left(x+5\right)}=\frac{5}{x\left(x+5\right)}\)

 

 

27 tháng 10 2018

a) \(\left(x-1\right)^2-\left(x-2\right)\left(x+2\right)=x^2-2x+1-x^2+4=5-2x\)

mình nghĩ là câu b bạn ghi đề sai vì như thế không có hằng đẳng thức nhé

b)\(\left(x^2+\frac{1}{3}x+\frac{1}{9}\right)\left(x-\frac{1}{3}\right)-\left(x-\frac{1}{3}\right)^3=x^3-\frac{1}{27}-x^3+\frac{1}{27}+x^2-\frac{1}{3}x=x^2-\frac{1}{3}x\)

27 tháng 10 2018

b,\(\left(x^2+\frac{1}{x}+\frac{1}{9}\right)\left(x-\frac{1}{3}\right)-\left(x-\frac{1}{3}\right)^3\)

\(=\)\(\left(x-\frac{1}{3}\right)\left[\left(x^2+\frac{1}{x}+\frac{1}{9}\right)-\left(x-\frac{1}{3}\right)^2\right]\)

\(=\)\(\left(x-\frac{1}{3}\right)\left(x^2+\frac{1}{x}+\frac{1}{9}-x^2+\frac{2}{3}x-\frac{1}{9}\right)\)

\(=\left(x-\frac{1}{3}\right)\left(\frac{1}{x}+\frac{2}{3}x\right)\) \(=1+\frac{2}{3}x^2-\frac{1}{3x}-\frac{2}{9}x\)

23 tháng 3 2017

Ta có:

\(A=\frac{1}{\left(x+y\right)^3}\left(\frac{1}{x^4}-\frac{1}{y^4}\right)=\frac{1}{\left(x+y\right)^3}.\frac{\left(y^2+x^2\right)\left(x+y\right)\left(y-x\right)}{x^4y^4}=\frac{\left(x^2+y^2\right)\left(y-x\right)}{\left(x+y\right)^2x^4y^4}\)

\(B=\frac{1}{\left(x+y\right)^4}.\left(\frac{1}{x^3}-\frac{1}{y^3}\right)=\frac{\left(y-x\right)\left(y^2+xy+x^2\right)}{\left(x+y\right)^4x^3y^3}\)

\(C=\frac{1}{\left(x+y\right)^5}\left(\frac{1}{x^2}-\frac{1}{y^2}\right)=\frac{y-x}{\left(x+y\right)^4x^2y^2}\)

\(\Rightarrow A+B+C=\frac{\left(x^2+y^2\right)\left(y-x\right)}{\left(x+y\right)^2x^4y^4}+\frac{\left(y-x\right)\left(x^2+xy+y^2\right)}{\left(x+y\right)^4x^3y^3}+\frac{\left(y-x\right)}{\left(x+y\right)^4x^2y^2}\)

\(=\frac{y^3-x^3}{x^4y^4\left(x+y\right)^2}\)

b/ Thế vô rồi tính nhé

23 tháng 3 2017

Đoạn gần cuối thay y-x= 1 luôn 

\(A+B+C=\frac{x^2+y^2}{\left(x+y\right)^2x^4y^4}+\left(\frac{\left(x+y\right)^2}{\left(x+y\right)^4\left(xy\right)^3}\right)\\ \)

\(A+B+C=\frac{x^2+y^2}{\left(x+y\right)^2\left(xy\right)^4}+\frac{1}{\left(x+y\right)^2\left(xy\right)^3}\)

\(A+B+C=\frac{x^2+y^2+xy}{\left[\left(x+y\right)xy\right]^2\left(xy\right)^2}\)  giờ mới thay không biết đã tối giản chưa

16 tháng 8 2016

a) \(P=\frac{bc}{\left(a-b\right)\left(a-c\right)}+\frac{ac}{\left(b-c\right)\left(b-a\right)}+\frac{ab}{\left(c-a\right)\left(c-b\right)}\)

Đặt \(x=\frac{b}{c-a},y=\frac{c}{a-b},z=\frac{a}{b-c}\) , suy ra : \(P=-xy-yz-xz\)

Lại có : \(\left(x-1\right)\left(y-1\right)\left(z-1\right)=\left(x+1\right)\left(y+1\right)\left(z+1\right)\)

\(\Rightarrow xy+yz+xz=-1\Rightarrow P=1\)

 

16 tháng 8 2016

\(Q=\frac{\left[\left(x+\frac{1}{x}\right)^2\right]^3-\left(x^3+\frac{1}{x^3}\right)^2}{\left(x+\frac{1}{x}\right)^3+\left(x^3+\frac{1}{x^3}\right)}=\left(x+\frac{1}{x}\right)^3-\left(x^3+\frac{1}{x^3}\right)\)

\(=3x+\frac{3}{x}=3\left(x+\frac{1}{x}\right)\)

26 tháng 3 2018

\(A=\left(\frac{x+1}{x}\right)^2:\left[\frac{x^2+1}{x^2}+\frac{2}{x+1}\cdot\frac{x+1}{x}\right]\)

\(A=\left(\frac{x+1}{x}\right)^2:\left[\frac{x^2+1}{x^2}+\frac{2}{x}\right]\)

\(A=\left(\frac{x+1}{x}\right)^2:\left(\frac{x^2+1+2x}{x^2}\right)\)

\(A=\left(\frac{x+1}{x}\right)^2:\left(\frac{x+1}{x}\right)^2=1\)