K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 7 2016

bai nay mk lam roi kq la 20

n =20

4 tháng 9 2017

n thuoc N nha ban

1 tháng 11 2016

Trên dãy số có các số là: 

 (n-1):1+1=n(số)

=> n.(n+1):2=465

n.(n+1)=465.2

n.(n+1)=930

Mà 30.31=930

nên n = 30

11 tháng 7 2020

Đặt \(2^4+2^7+2^n=a^2\left(a\in N\right)\)

\(\Leftrightarrow\left(2^4+2^7\right)+2^n=a^2\)

\(\Leftrightarrow2^4.\left(1+2^3\right)+2^n=a^2\)

\(\Leftrightarrow2^4.3^2+2^n=a^2\)

\(\Leftrightarrow\left(2^2.3\right)^2+2^n=a^2\)

\(\Leftrightarrow12^2+2^n=a^2\)

\(\Leftrightarrow2^n=a^2-12^2\)

\(\Leftrightarrow2^n=\left(a-12\right).\left(a+12\right)\)

Đặt \(a-12=2^q\) ( * ) ; \(a+12=2^p\) ( ** ) 

Giả sử p > q ; p , q \(\in\) N 

Lấy ( ** ) - ( * ) vế với vế ta được : \(24=2^p-2^q\)

                                                \(2^3.3=2^q.\left(2^{p-q}-1\right)\)

\(\Rightarrow\hept{\begin{cases}2^3=2^q\\3=2^{p-q}-1\end{cases}}\)  \(\Rightarrow\hept{\begin{cases}q=3\\2^2=2^{p-q}\end{cases}}\)  \(\Rightarrow\hept{\begin{cases}q=3\\p-q=2\end{cases}}\)  \(\hept{\begin{cases}q=3\\p=5\end{cases}}\) 

\(\Rightarrow n=p+q=3+5=8\)

Với \(n=8\) thì \(2^4+2^7+2^n=2^4+2^7+2^8=16+128+256=400=20^2\) là số chính phương thỏa mãn yêu cầu bài toán 

Vậy \(n=8\) 

27 tháng 11 2015

dễ bằng 20 bài này trong violympic tui gặp rùi tick nhé bảo kiệt