mọi người giúp mình với ạ cảm ơn nhiều
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2:
a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
góc ABD=góc EBD
=>ΔBAD=ΔBED
b: BA=BE
DA=DE
=>BD là trung trực của AE
c: DA=DE
DE<DC
=>DA<DC
4:
a: ΔABC cân tại A có AI là phân giác
nên AI vuông góc BC tại I
b: Xét ΔABC có
CM,AI là trung tuyến
CM cắt AI tại G
=>G là trọng tâm
=>BG là trung tuyến của ΔABC
c: BI=CI=9cm
=>AI=căn 15^2-9^2=12cm
=>GI=1/3*12=4cm
Đổi 100ml = 0,1 lít
Ta có: \(n_{HCl}=2.0,1=0,2\left(mol\right)\)
a. PTHH: \(AgNO_3+HCl--->AgCl\downarrow+HNO_3\)
Theo PT: \(n_{AgNO_3}=n_{HCl}=0,2\left(mol\right)\)
Đổi 200ml = 0,2 lít
=> \(C_{M_{AgNO_3}}=\dfrac{0,2}{0,2}=1M\)
b. Ta có: \(m_{dd_{HNO_3}}=0,1\left(lít\right)\)
Theo PT: \(n_{HNO_3}=n_{HCl}=0,2\left(mol\right)\)
=> \(C_{M_{HNO_3}}=\dfrac{0,2}{0,1}=2M\)
a, Vì ABCD là hbh nên AB//CD
Do đó \(\widehat{A}+\widehat{D}=180^0\Rightarrow3\widehat{D}=180^0\Rightarrow\widehat{D}=60^0\Rightarrow\widehat{A}=120^0\)
Mà ABCD là hbh nên \(\left\{{}\begin{matrix}\widehat{A}=\widehat{C}=120^0\\\widehat{D}=\widehat{B}=60^0\end{matrix}\right.\)
b, Vì CE=CB nên tam giác CEB cân tại C
Do đó \(\widehat{B}=\widehat{CEB}\)
\(\Rightarrow\widehat{D}=\widehat{CEB}\left(1\right)\)
Mà ABCD là hbh nên AB//CD hay AE//CD
Do đó AECD là hình thang
Kết hợp (1) ta được AECD là hthang cân
Bài 7:
a: Sửa đề: Tính góc ABD
Xét ΔMAC và ΔMDB có
MA=MD
\(\widehat{AMC}=\widehat{DMB}\)(hai góc đối đỉnh)
MC=MB
Do đó: ΔMAC=ΔMDB
=>\(\widehat{MAC}=\widehat{MDB}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AC//BD
Ta có: AC//BD
AC\(\perp\)AB
Do đó: BD\(\perp\)AB
=>\(\widehat{ABD}=90^0\)
b: Ta có: ΔMAC=ΔMDB
=>AC=BD
Xét ΔBAC vuông tại A và ΔABD vuông tại B có
AB chung
AC=BD
Do đó: ΔBAC=ΔABD
c: Ta có: ΔBAC=ΔABD
=>BC=AD
mà \(AM=\dfrac{1}{2}AD\)
nên \(AM=\dfrac{1}{2}BC\)
Bài 8:
a: ta có: BC=BD
B nằm giữa D và C(BD và BC là hai tia đối nhau)
Do đó: B là trung điểm của DC
AB và AE là hai tia đối nhau
=>A nằm giữa B và E
=>\(BE=BA+AE=2AB+AB=3AB\)
=>\(\dfrac{EA}{EB}=\dfrac{2AB}{3AB}=\dfrac{2}{3}\)
Xét ΔEDC có
EB là đường trung tuyến
\(EA=\dfrac{2}{3}EB\)
Do đó: A là trọng tâm của ΔEDC
b: Xét ΔEDC có
A là trọng tâm
nên CA đi qua trung điểm của DE