Cho tam giác ABC, . M là trung điểm BC. Phân giác góc AMB cắt AB tại E, phân giác góc AMC cắt AC tại F. Khi đó, khẳng định nào dưới đây là đúng?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì MD và ME lần lượt là phân giác của A M B ^ , A M C ^ nên D A D B = M A M B , E A E C = M A M C
Mà MB = MC nên D A D B = E A E C => DE // BC (định lí Talet đảo)
Vì DE // BC nên D I B M = A I A M = I E M C (hệ quả định lí Talet) mà BM = MC nên DI = IE.
Nên cả A, B đều đúng.
Đáp án: D
áp dụng t/c đường phân giác vào tam giác AMB có :
\(\dfrac{ME}{AB}=\dfrac{AM}{MB}\left(1\right)\)
áp dụng t/c đường phân giác vào tam giác AMC có :
\(\dfrac{MF}{AC}=\dfrac{AM}{MC}\left(2\right)\)
mà AB = AC ; MB=MC
từ (1) và (2) suy ra : ME= MF (đpcm)
Bài làm:
a) Ta có: \(\widehat{EMF}=\widehat{EMA}+\widehat{FMA}\)
\(=\frac{1}{2}\widehat{AMB}+\frac{1}{2}\widehat{AMC}\)
\(=\frac{1}{2}\left(\widehat{AMB}+\widehat{AMC}\right)=\frac{1}{2}.180^0=90^0\)
b) Vì ME là phân giác của tam giác AMB => \(\frac{AE}{EB}=\frac{AM}{MB}=\frac{AM}{MC}\)
Vì MF là phân giác của tam giác AMC => \(\frac{FA}{FC}=\frac{AM}{MC}=\frac{AM}{MB}\)
=> \(\frac{AE}{EB}=\frac{FA}{FC}\) => EF // AB
c) BC = 20cm => BM = 10cm
Ta có: \(\frac{AE}{EB}=\frac{AM}{MB}=\frac{10}{10}=1\Rightarrow AE=EB\Rightarrow AE=\frac{1}{2}AB\)
\(\Rightarrow\frac{AE}{AB}=\frac{1}{2}\)
Mà EF // BC => \(\frac{FE}{BC}=\frac{AE}{AB}=\frac{1}{2}\Rightarrow EF=\frac{1}{2}.BC=\frac{1}{2}.20=10\left(cm\right)\)
Vậy EF = 10(cm)
Vì ME là phân giác của \(\widehat{AMB}\) nên \(\frac{EA}{EB}=\frac{MA}{MB}\)
MF là phân giác của \(\widehat{AMC}\) nên \(\frac{FA}{FB}=\frac{MA}{MC}\)
Mà \(MB=MC\) nên \(\frac{EA}{EB}=\frac{FA}{FC}\). Theo định lí Ta - lét đảo \(\Rightarrow EF\)// \(BC\)
\(\Rightarrow\widehat{FEM}=\widehat{EMB}\)
\(\widehat{EFM}=\widehat{FMC}\)
Mà \(\widehat{FEM}=\widehat{EFM}\) ( Do \(\Delta MEF\) cân tại M )
\(\Rightarrow\widehat{EMB}=\widehat{FMC}\Rightarrow\frac{\widehat{AMB}}{2}=\frac{\widehat{AMC}}{2}\Rightarrow\widehat{AMB}=\widehat{AMC}=90\)
=> AM vuông góc với BC hay AM là đường cao .lại có AM là trung tuyến nên tam giác ABC cân tại A
TK:
a) Xét ΔAMB và ΔAMC có:
AB=AC(gt)
ˆBAM=ˆCAM(AM là tia phân giác góc A)
AM chung
=> ΔAMB=ΔAMC(c.g.c)
b) Ta có: ΔAMB=ΔAMC(cmt)
=> ˆAMB=ˆAMC
Mà 2 góc này là 2 góc kề bù
⇒ˆAMB=ˆAMC=900
=> AM⊥BC
c) Ta có: ΔAMB=ΔAMC(cmt)
=> BM=MC( 2 cạnh tương ứng)
=> M là trung điểm BC