K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 7 2016

a) \(\left(x^2+4\right)^2-4x\left(x^2+4\right)=0\)

\(=\left(x^2+4\right)\left(x^2+4-4x\right)=0\)

\(=\left(x^2+4\right)\left(x+2\right)^2=0\)

Mà \(x^2\ge0\Rightarrow x^2+4>0\)

\(\Rightarrow x+2=0\)

\(\Rightarrow x=-2\)

b) \(x^5-18x^3+81x=0\)

\(=\left(x^5-9x^3\right)-\left(9x^3-81x\right)=0\)

\(=x^3\left(x^2-9\right)-9x\left(x^2-9\right)=0\)

\(=\left(x^3-9x\right)\left(x^2-9\right)=0\)

\(=x\left(x^2-9\right)\left(x^2-9\right)=0\)

\(=x\left(x^2-9\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=0\\x^2-9=0\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=0\\x\in\left\{-3;3\right\}\end{cases}}\)

2 tháng 11 2021

\(a,\Rightarrow\left(2x-5\right)^2+2\left(2x-5\right)\left(x+2\right)+\left(x+2\right)^2=0\\ \Rightarrow\left(2x-5+x+2\right)^2=0\\ \Rightarrow3x-3=0\\ \Rightarrow x=1\\ b,\Rightarrow9-\left(x^2-5x\right)^2=9\\ \Rightarrow x^2-5x=0\\ \Rightarrow x\left(x-5\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x=5\end{matrix}\right.\)

15 tháng 9 2023

\(a.x^2-4x+4=0\)

\(\left(x-2\right)^2=0\)

=>x=2

b) \(2x^2-x=0\)

\(x\left(2x-1\right)=0\)

=> \(\left[{}\begin{matrix}x=0\\x=\dfrac{1}{2}\end{matrix}\right.\)

c) \(x^2-5x+6=0\)

\(x^2-2x-3x+6=0\)

\(\left(x-2\right)\left(x-3\right)=0\)

=> \(\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)

d) \(x^2+y^2=0\)

Vì \(x^2,y^2\ge0\forall x,y\)

=>x=y=0

e) \(x^2+6x+10=0\)

\(\left(x+3\right)^2+1=0\)

Vì \(\left(x+3\right)^2\ge0\forall x\)

=> VT>0 \(\forall x\)

=> phương trình vô nghiệm

17 tháng 12 2023

a) x³y + x - y - 1

= (x³y - y) + (x - 1)

= y(x³ - 1) + (x - 1)

= y(x - 1)(x² + x + 1) + (x - 1)

= (x - 1)[y(x² + x + 1) + 1]

= (x - 1)(x²y + xy + y + 1)

b) x²(x - 2) + 4(2 - x)

= x²(x - 2) - 4(x - 2)

= (x - 2)(x² - 4)

= (x - 2)(x - 2)(x + 2)

= (x - 2)²(x + 2)

c) x³ - x² - 20x

= x(x² - x - 20)

= x(x² + 4x - 5x - 20)

= x[(x² + 4x) - (5x + 20)]

= x[x(x + 4) - 5(x + 4)]

= x(x + 4)(x - 5)

d) (x² + 1)² - (x + 1)²

= (x² + 1 - x - 1)(x² + 1 + x + 1)

= (x² - x)(x² + x + 2)

= x(x - 1)(x² + x + 2)

17 tháng 12 2023

e) 6x² - 7x + 2

= 6x² - 3x - 4x + 2

= (6x² - 3x) - (4x - 2)

= 3x(2x - 1) - 2(2x - 1)

= (2x - 1)(3x - 2)

f) x⁴ + 8x² + 12

= x⁴ + 2x² + 6x² + 12

= (x⁴ + 2x²) + (6x² + 12)

= x²(x² + 2) + 6(x² + 2)

= (x² + 2)(x² + 6)

g) (x³ + x + 1)(x³ + x) - 2

Đặt u = x³ + x

x³ + x + 1 = u + 1

(u + 1).u - 2

= u² + u - 2

= u² - u + 2u - 2

= (u² - u) + (2u - 2)

= u(u - 1) + 2(u - 1)

= (u - 1)(u + 2)

= (x³ + x - 1)(x³ + x + 2)

= (x³ + x - 1)(x³ + x² - x² - x + 2x + 2)

= (x³ + x - 1)[(x³ + x²) - (x² + x) + (2x + 2)]

= (x³ + x - 1)[x²(x + 1) - x(x + 1) + 2(x + 1)]

= (x³ + x - 1)(x - 1)(x² - x + 2)

h) (x + 1)(x + 2)(x + 3)(x + 4) - 1

= [(x + 1)(x + 4)][(x + 2)(x + 3)] - 1

= (x² + 5x + 4)(x² + 5x + 6) - 1 (1)

Đặt u = x² + 5x + 4

u + 2 = x² + 5x + 6

(1) u.(u + 2) - 1

= u² + 2u - 1

= u² + 2u + 1 - 2

= (u² + 2u + 1) - 2

= (u + 1)² - 2

= (u + 1 + √2)(u + 1 - √2)

= (x² + 5x + 4 + 1 + √2)(x² + 5x + 4 + 1 - √2)

= (x² + 5x + 5 + √2)(x² + 5x + 5 - √2)

7 tháng 8 2021

undefined

undefined

25 tháng 7 2021

1. A

2. C 

Câu 1: A

Câu 2: C

Câu 2: 

a) Ta có: \(36x^3-4x=0\)

\(\Leftrightarrow4x\left(9x^2-1\right)=0\)

\(\Leftrightarrow x\left(3x-1\right)\left(3x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{3}\\x=\dfrac{-1}{3}\end{matrix}\right.\)

b) Ta có: \(3x\left(x-2\right)+x-2=0\)

\(\Leftrightarrow\left(x-2\right)\left(3x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{-1}{3}\end{matrix}\right.\)

9 tháng 12 2021

\(a,\Leftrightarrow9x^2=-36\Leftrightarrow x\in\varnothing\\ b,\Leftrightarrow3\left(x+4\right)-x\left(x+4\right)=0\\ \Leftrightarrow\left(3-x\right)\left(x+4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=3\\x=-4\end{matrix}\right.\\ c,\Leftrightarrow2x^2-x-2x^2+3x+2=0\\ \Leftrightarrow2x=-2\Leftrightarrow x=-1\\ d,\Leftrightarrow\left(2x-3-2x\right)\left(2x-3+2x\right)=0\\ \Leftrightarrow-3\left(4x-3\right)=0\\ \Leftrightarrow x=\dfrac{3}{4}\\ e,\Leftrightarrow\dfrac{1}{3}x\left(x-9\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=9\end{matrix}\right.\\ f,\Leftrightarrow x^2\left(x-1\right)-\left(x-1\right)=0\\ \Leftrightarrow\left(x^2-1\right)\left(x-1\right)=0\\ \Leftrightarrow\left(x-1\right)^2\left(x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)

20 tháng 11 2019

a)

3 · x 2 + x 2 - 2 x 2 + x - 1 = 0 ( 1 )

Đặt  t   =   x 2   +   x ,

Khi đó (1) trở thành :  3 t 2   –   2 t   –   1   =   0   ( 2 )

Giải (2) : Có a = 3 ; b = -2 ; c = -1

⇒ a + b + c = 0

⇒ (2) có hai nghiệm  t 1   =   1 ;   t 2   =   c / a   =   - 1 / 3 .

+ Với t = 1  ⇒   x 2   +   x   =   1   ⇔   x 2   +   x   –   1   =   0   ( * )

Có a = 1; b = 1; c = -1  ⇒   Δ   =   1 2   –   4 . 1 . ( - 1 )   =   5   >   0

(*) có hai nghiệm

Giải bài 40 trang 57 SGK Toán 9 Tập 2 | Giải toán lớp 9

Giải bài 40 trang 57 SGK Toán 9 Tập 2 | Giải toán lớp 9

Có a = 3; b = 3; c = 1 ⇒   Δ   =   3 2   –   4 . 3 . 1   =   - 3   <   0

⇒ (**) vô nghiệm.

Vậy phương trình (1) có tập nghiệm Giải bài 40 trang 57 SGK Toán 9 Tập 2 | Giải toán lớp 9

b)

x 2 − 4 x + 2 2 + x 2 − 4 x − 4 = 0 ⇔ x 2 − 4 x + 2 2 + x 2 − 4 x + 2 − 6 = 0 ( 1 )

Đặt  x 2   –   4 x   +   2   =   t ,

Khi đó (1) trở thành:   t 2   +   t   –   6   =   0   ( 2 )

Giải (2): Có a = 1; b = 1; c = -6

⇒  Δ   =   1 2   –   4 . 1 . ( - 6 )   =   25   >   0

⇒ (2) có hai nghiệm

Giải bài 40 trang 57 SGK Toán 9 Tập 2 | Giải toán lớp 9

+ Với t = 2  ⇒   x 2   –   4 x   +   2   =   2

⇔   x 2   –   4 x   =   0

⇔ x(x – 4) = 0

⇔ x = 0 hoặc x = 4.

+ Với t = -3  ⇒   x 2   –   4 x   +   2   =   - 3

⇔ x2 – 4x + 5 = 0 (*)

Có a = 1; b = -4; c = 5  ⇒   Δ ’   =   ( - 2 ) 2   –   1 . 5   =   - 1   <   0

⇒ (*) vô nghiệm.

Vậy phương trình ban đầu có tập nghiệm S = {0; 4}.

Giải bài 40 trang 57 SGK Toán 9 Tập 2 | Giải toán lớp 9

Khi đó (1) trở thành:  t 2   –   6 t   –   7   =   0   ( 2 )

Giải (2): Có a = 1; b = -6; c = -7

⇒ a – b + c = 0

⇒ (2) có nghiệm  t 1   =   - 1 ;   t 2   =   - c / a   =   7 .

Đối chiếu điều kiện chỉ có nghiệm t = 7 thỏa mãn.

+ Với t = 7 ⇒ √x = 7 ⇔ x = 49 (thỏa mãn).

Vậy phương trình đã cho có nghiệm x = 49.

Giải bài 40 trang 57 SGK Toán 9 Tập 2 | Giải toán lớp 9

⇔   t 2   –   10   =   3 t   ⇔   t 2   –   3 t   –   10   =   0   ( 2 )

Giải (2): Có a = 1; b = -3; c = -10

⇒   Δ   =   ( - 3 ) 2   -   4 . 1 . ( - 10 )   =   49   >   0

⇒ (2) có hai nghiệm:

Giải bài 40 trang 57 SGK Toán 9 Tập 2 | Giải toán lớp 9

Giải bài 40 trang 57 SGK Toán 9 Tập 2 | Giải toán lớp 9

Cả hai nghiệm đều thỏa mãn điều kiện xác định.

Vậy phương trình đã cho có tập nghiệm Giải bài 40 trang 57 SGK Toán 9 Tập 2 | Giải toán lớp 9

d: Ta có: \(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)=24\)

\(\Leftrightarrow\left(x^2+5x+4\right)\left(x^2+5x+6\right)-24=0\)

\(\Leftrightarrow x\left(x+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)