Giá trị biểu thức \(\sqrt{2+\sqrt{2+\sqrt{2+...}}}\) (có vô hạn dấu căn)
bạn biết nào chỉ cho mình cách giải với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(A=\left(\sqrt{2+\sqrt{2+\sqrt{2+...}}}\right)\) nên \(A^2=2+\left(\sqrt{2+\sqrt{2+...}}\right)\) ( có vô hạn dấu căn)
hay \(A^2=2+A\Leftrightarrow A^2-A-2=0\Leftrightarrow\left(A+1\right)\left(A-2\right)=0\)
Vì A>0 nên A=2
tick nha
A2 = \(2+\sqrt{2+\sqrt{2+\sqrt{2.......}}}\)
A2 = 2 + A
=> A2 - A - 2 = 0
=> A2 - 2A + A - 2 = 0
=> A(A - 2) + (A - 2) = 0
=> (A - 2)(A+ 1) = 0 => A = 2 hoặc A = -1
Mà A > 0 nên A = 2
Đặt A = \(\sqrt{2+\sqrt{2+....}}\)
A^2 = 2 + \(\sqrt{2+\sqrt{2+....}}\)
A^2 = 2 + A
=> A^2 - A - 2 = 0
=> ( A + 1 )(A-2) = 0
=> A = 2 hoặc A = -1 ( loại A > 0 )
Vậy A = 2
Đặt \(A=\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+...}}}}}\)
Nhận xét : A > 0
Ta có : \(A^2=2+\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+....}}}}=A+2\)
\(\Leftrightarrow A^2-A-2=0\Leftrightarrow\left(A-2\right)\left(A+1\right)=0\)
Vì A > 0 nên ta chọn A = 2
Vậy giá trị của biểu thức là : A = 2
Đặt A= biểu thức đó
=>A^2= 2+ A
=>A^2-A-2=0
Giải PT tìm ra A
p/s: lấy A>0 thôi
\(1,ĐKXĐ:x\ge0\\ x\sqrt{3}=-\sqrt{3x^2}\\ \Leftrightarrow3x^2=9x^2\\ \Leftrightarrow6x^2=0\\ \Leftrightarrow x=0\left(tm\right)\)
\(2,ab^2\sqrt{a}=ab^2\sqrt{a}\)
\(3,a\sqrt{\dfrac{b}{a}}=\sqrt{ab}\)
Đặt \(A=\sqrt{2+\sqrt{2+\sqrt{2+...}}}\) . Nhận xét : A > 0
\(\Rightarrow A^2=2+\sqrt{2+\sqrt{2+\sqrt{2+...}}}=A+2\)
\(\Rightarrow A^2-A-2=0\Leftrightarrow\left(A-2\right)\left(A+1\right)=0\Leftrightarrow\orbr{\begin{cases}A=2\left(\text{nhận}\right)\\A=-1\left(\text{loại}\right)\end{cases}}\)
Vậy A = 2