Cho cho abc tren ab lay d sao cho ad bang 1 phan 3 ab tren ac lay e sao cho ec bang 1phan 3 ac noi ae, cd cat nhau tai i
noi de
chung to de song song voi ac
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
to cung lkjdfjkdjffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffssssssssssssssssssssssssssssss26564851154551313464
Cho tam giác ABC trên BC lay D sao cho AD =1/3 AB trên BC lay E sao cho EC=1/3BC noi AEva CD cát nhau tai IA,So sanh S AID va S CIEB,Noi D voi E chung to DE song song voi AC
Cho tam giác ABC trên BC lay D sao cho AD =1/3 AB trên BC lay E sao cho EC=1/3BC noi AEva CD cát nhau tai IA,So sanh S AID va S CIEB,Noi D voi E chung to DE song song voi AC\(tíchnha\)
ban nobita kun cu sao chep de toan roi tra loi la khong tot dau
tu ke hinh
a, xet tam giac ADE va tam giac ADB có : AD chung
AB = AE (Gt)
goc EAD = goc BAD do AD la phan giac cua goc BAC (gt)
=> tam giac ADE = tam giac ADB (c - g - c)
=> DE = DB (dn) (1)
goc AED = goc ABD (dn)
goc AED + goc DEC = 180 (kb)
goc ABD + goc DBK = 180 (kb)
=> goc DEC = goc DBK (2)
xet tam giac EDC va tam giac BDK co goc EDC = hoc BDK (doi dinh) ; (1); (2)
=> tam giac EDC = tam giac BDK (g - c - g)
=> DE = DB (dn)
b, tam giac EDC = tam giac BDK (Cau a)
=> DC = DK (dn)
=> tam giac DCK can tai D (dn)
=> goc DKC = goc DCK (dn)
c, AE = AB (gt)
EC = KB do tam giac EDC = tam giac BDK (cau a)
AE + EC = AC
AB + BK = AK
=> AC = AK
xet tam giac CAD va tam giac BAD co : AD chung
goc CAD = goc BAD (Cau a)
=> tam giac CAD = tam giac BAD (c - g - c)
=> goc CDA = goc ADK (dn)
goc CDA + goc ADK = 180 (kb)
=> goc CAD = 90
=> AD _|_ CK (dn)
Xét tam giác ΔAHO và ΔBHO, ta có :
+ \(\widehat{O}\) là góc chung(giả thuyết)
+AH=AB(vì Ot là tia phân giác của góc xOy)
+\(\widehat{AHO}\)=\(\widehat{BHO}\)(giả thuyết)
➩ΔAHO = ΔBHO (c.g.c)(nghĩa là góc.cạnh.góc)
⚠⚠⚠Lưu ý: trường hợp này là góc.cạnh.góc (hoặc là c.g.c) nên theo yêu cầu cần 2 góc và 1 cạnh ; phải đặt đúng theo thứ tự :
Góc đầu tiên;rồi đến cạnh và cuối là góc còn lại
Bạn kham khảo link này nhé.
Câu hỏi của Đào Gia Khanh - Toán lớp 7 - Học toán với OnlineMath