tia phân giác cho tam giác abc vuông tại a, có b = 60 0 và ab = 5cm. tia phân giác của góc b cắt ac tại d. kẻ de vuông góc với bc tại e.
A) gọi k là giao điểm của ab và ed : so sánh bk và bc
B) chứng minh kc song song với ae
C) tính ac
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tam giác ABC vuông tại A (gt)
=> góc B + góc C = 90
mà góc B = 60
=> góc C = 30
=> góc C < góc B xét tam giác ABC
=> AB < AC (đl)
tgiac ABC vuông ở , B=60¤=> C=30¤
=>AC>AB vì
AC là cạnh đối diện với góc lớn hơn (60¤)
AB.......................................nhở hơn (30¤)..
b) Xét tam giác abc và tam giác dbe có:
\(\widehat{b}\): góc chung
ab = bd (gt)
\(\widehat{bac}\)= \(\widehat{bde}\)( = 90 độ )
Vậy: tam giác abc = tam giac dbe
a.Ta có:
⎧⎪⎨⎪⎩BA=BEˆABD=ˆDBEchungBD→ΔABD=ΔEBD(c.g.c){BA=BEABD^=DBE^chungBD→ΔABD=ΔEBD(c.g.c)
b.Từ câu a→ˆBED=ˆBAD=90o→BED^=BAD^=90o
→DE⊥BC→DE⊥BC
c.Ta có:
ˆBKD+ˆADK=ˆACB+ˆDEC=90oBKD^+ADK^=ACB^+DEC^=90o
→ˆBKD=ˆACB→BKD^=ACB^
→ΔBDK=ΔBDC(g.c.g)→ΔBDK=ΔBDC(g.c.g)
→BK=BC→BK=BC
a: BC=căn 4^2+3^2=5cm
AC<AB<BC
=>góc B<góc C<góc A
b: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
góc ABD=góc EBD
=>ΔBAD=ΔBED
c: Xét ΔBEF vuông tại E và ΔBAC vuông tại A có
góc EBF chung
=>ΔBEF đồng dạng với ΔBAC
=>BF=BC
a: Xet ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
góc ABD=góc EBD
=>ΔBAD=ΔBED
=>BA=EB
b: AB<AC
=>góc C<góc B
=>góc C<45 độ
=>gócEDC>45 độ
=>góc C<góc EDC
=>ED<EC
=>DA<AM<DM
a) Xét ΔABD vuông tại A và ΔEBD vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))
Do đó: ΔABD=ΔEBD(Cạnh huyền-góc nhọn)
Suy ra: AD=ED(Hai cạnh tương ứng)
Lời giải:
a) Ta có: {∠ABD=∠EBD(do BD là phân giác góc B)∠BAD=∠BED=900{∠ABD=∠EBD(do BD là phân giác góc B)∠BAD=∠BED=900
⇒1800−∠ABD−∠BAD=1800−∠EBD−∠BED⇒1800−∠ABD−∠BAD=1800−∠EBD−∠BED
⇔∠BDA=∠BDE⇔∠BDA=∠BDE
Xét tam giác ABDABD và EBDEBD có:
⎧⎪⎨⎪⎩BD chung∠ABD=∠EBD∠BDA=∠BDE⇒△ABD=△EBD(g.c.g){BD chung∠ABD=∠EBD∠BDA=∠BDE⇒△ABD=△EBD(g.c.g)
Ta có đpcm.
b) Theo phần a △ABD=△EBD⇒BA=BE△ABD=△EBD⇒BA=BE
Do đó tam giác BAEBAE cân tại BB
⇒∠BEA=∠BAE⇒∠BEA=∠BAE
Mà ∠BEA+∠BAE=1800−∠ABE=1800−600=1200∠BEA+∠BAE=1800−∠ABE=1800−600=1200
Suy ra ∠BEA=∠BAE=600=∠ABE∠BEA=∠BAE=600=∠ABE
Do đó tam giác ABEABE đều
c)
Có: cosˆABC=ABBC⇔cos600=5BC⇔12=5BCcosABC^=ABBC⇔cos600=5BC⇔12=5BC
⇔BC=10⇔BC=10 (cm)
bạn sai đề rồi bạn ơi =))