K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1.Cho tam giác ABC có trọng tâm G. Đường thẳng d đi qua G cắt hai cạnh AB và AC. CMR khoảng cách từ A đến d bằng tổng các khoảng cách từ B và C đến d.Bài 2. Cho tam giác ABC cân tại A và đường cao AD. Từ D dựng DE vuông góc AB và DF vuông góc AC (E thuộc AB, F thuộc AC)a) Chứng minh AD là trung trực của đoạn EF.[B]b) [/B]Trên tia đối của tia DE lấy điểm G sao cho DG=DE. Chứng minh tam giác CEG vuông.Bài...
Đọc tiếp

Bài 1.Cho tam giác ABC có trọng tâm G. Đường thẳng d đi qua G cắt hai cạnh AB và AC. CMR khoảng cách từ A đến d bằng tổng các khoảng cách từ B và C đến d.
Bài 2. Cho tam giác ABC cân tại A và đường cao AD. Từ D dựng DE vuông góc AB và DF vuông góc AC (E thuộc AB, F thuộc AC)
a) Chứng minh AD là trung trực của đoạn EF.
[B]b) [/B]Trên tia đối của tia DE lấy điểm G sao cho DG=DE. Chứng minh tam giác CEG vuông.
Bài 3. Cho tam giác ABC, vẽ tam giác vuông cân ABD cân tại B,A và D ở hai nửa mặt phẳng đối nhau bờ là đường thẳng BC. Vẽ tam giác vuông cân CBG cân tại B,G và A ở cùng nửa mặt phẳng bờ là đường thẳng BC. Chứng minh rằng GA vuông góc vớ DC.
Bài 4.Cho tam giác ABC trên tia đối của tia BA, CA lần lượt lấy điểm P,Q sao cho BP=CQ. Gọi M,N lần lượt là trung điểm của các đoạn BC,PQ. Đường thẳng MN cắt đường thẩngB,AC theo thứ tự tại B' và C'. Chứng minh rằng tam giác B'AC cân.

1
22 tháng 2 2020

Ta có: ΔABC đều, D ∈ AB, DE⊥AB, E ∈ BC
=> ΔBDE có các góc với số đo lần lượt là: 300
; 600
; 900
 => BD=1/2BE
Mà BD=1/3BA => BD=1/2AD => AD=BE => AB-AD=BC-BE (Do AB=BC)
=> BD=CE. 
Xét ΔBDE và ΔCEF: ^BDE=^CEF=900
; BD=CE; ^DBE=^ECF=600
=> ΔBDE=ΔCEF (g.c.g) => BE=CF => BC-BE=AC-CF => CE=AF=BD
Xét ΔBDE và ΔAFD: BE=AD; ^DBE=^FAD=600
; BD=AF => ΔBDE=ΔAFD (c.g.c)
=> ^BDE=^AFD=900
 =>DF⊥AC (đpcm).
b) Ta có: ΔBDE=ΔCEF=ΔAFD (cmt) => DE=EF=FD (các cạnh tương ứng)
=> Δ DEF đều (đpcm).
c) Δ DEF đều (cmt) => DE=EF=FD. Mà DF=FM=EN=DP => DF+FN=FE+EN=DE+DP <=> DM=FN=EP
Lại có: ^DEF=^DFE=^EDF=600=> ^PDM=^MFN=^NEP=1200
 (Kề bù)
=> ΔPDM=ΔMFN=ΔNEP (c.g.c) => PM=MN=NP => ΔMNP là tam giác đều.
d) Gọi AH; BI; CK lần lượt là các trung tuyến của  ΔABC, chúng cắt nhau tại O.
=> O là trọng tâm ΔABC (1)
Do ΔABC đều nên AH;BI;BK cũng là phân giác trong của tam giác => ^OAF=^OBD=^OCE=300
Đồng thời là tâm đường tròn ngoại tiếp tam giác => OA=OB=OC
Xét 3 tam giác: ΔOAF; ΔOBD và ΔOCE:
AF=BD=CE
^OAF=^OBD=^OCE      => ΔOAF=ΔOBD=ΔOCE (c.g.c)
OA=OB=OC
=> OF=OD=OE => O là giao 3 đường trung trực  Δ DEF hay O là trọng tâm Δ DEF (2)
(Do tam giác DEF đề )
/

(Do tam giác DEF đều)
Dễ dàng c/m ^OFD=^OEF=^ODE=300
 => ^OFM=^OEN=^ODP (Kề bù)
Xét 3 tam giác: ΔODP; ΔOEN; ΔOFM:
OD=OE=OF
^ODP=^OEN=^OFM          => ΔODP=ΔOEN=ΔOFM (c.g.c)
OD=OE=OF (Tự c/m)
=> OP=ON=OM (Các cạnh tương ứng) => O là giao 3 đường trung trực của  ΔMNP
hay O là trọng tâm ΔMNP (3)
Từ (1); (2) và (3) => ΔABC; Δ DEF và ΔMNP có chung trọng tâm (đpcm).

a: ΔACB cân tại A

mà AD là trung tuyến

nên AD vuông góc BC

Xét tứ giác BGCE có

D là trung điểm chung của BC và GE

BC vuông góc GE

=>BGCE là hình thoi

=>BG=GC=CE=BE

b: Xét ΔABE và ΔACE có

AB=AC

BE=CE

AE chung

=>ΔABE=ΔACE

 a: Ta có: ΔABC cân tại A

mà AH là đường cao

nên H là trung điểm của CB

=>CB=2CH

mà CB=CE

nên CE=2CH

=>\(\dfrac{EC}{EH}=\dfrac{2}{3}\)

Xét ΔEAD có

EH là đường trung tuyến

\(EC=\dfrac{2}{3}EH\)

Do đó: C là trọng tâm của ΔEAD

b: Xét ΔEAD có

C là trọng tâm

AC cắt DE tại M

Do đó: M là trung điểm của DE

Xét ΔEAD có

H,M lần lượt là trung điểm của DA,DE

=>HM là đường trung bình của ΔEAD

=>HM//AE

c: Để HM\(\perp\)AB thì AE\(\perp\)AB

=>ΔABE vuông tại A

Ta có: ΔABE vuông tại A

mà AC là đường trung tuyến

nên AC=CB=CE

=>AC=CB

mà AB=AC

nên AC=AB=BC

=>ΔABC đều

=>\(\widehat{ABC}=60^0\)

Khi ΔABC đều thì \(\widehat{HAC}=\dfrac{60^0}{2}=30^0\)

Ta có: \(\widehat{ACE}+\widehat{ACB}=180^0\)(hai góc kề bù)

=>\(\widehat{ACE}+60^0=180^0\)

=>\(\widehat{ACE}=120^0\)

Ta có: CA=CE

=>ΔCAE cân tại C

=>\(\widehat{CAE}=\widehat{CEA}=\dfrac{180^0-\widehat{ACE}}{2}=30^0\)

\(\widehat{HAE}=\widehat{HAC}+\widehat{CAE}=30^0+30^0=60^0\)

Xét ΔEAD có

EH là đường cao

EH là đường trung tuyến

Do đó: ΔEAD cân tại E

mà \(\widehat{EAD}=60^0\)

nên ΔEAD đều

Ta có: ΔABC đều

mà AH là đường cao

nên \(AH=AB\cdot\dfrac{\sqrt{3}}{2}=\dfrac{3\sqrt{3}}{2}\left(cm\right)\)

H là trung điểm của AD

=>\(AD=2\cdot AH=3\sqrt{3}\left(cm\right)\)

ΔADE đều

mà AM là đường trung tuyến

nên AM\(\perp\)DE
=>ΔAMD vuông tại M

Xét ΔAMD vuông tại M có \(cosDAM=\dfrac{AM}{AD}\)

=>\(\dfrac{AM}{3\sqrt{3}}=cos30=\dfrac{\sqrt{3}}{2}\)

=>\(AM=4,5\left(cm\right)\)

30 tháng 3 2017

cho mk một tk đi bà con ơi

ủng hộ mk đi làm ơn