chứng minh rằng :1/3^2 +1/4^2 + 1/5^2 + 1/6^2 ... +1/100^2 <1/2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a>
\(\frac{1}{2^2}+\frac{1}{100^2}\)=1/4+1/10000
ta có 1/4<1/2(vì 2 đề bài muốn chứng minh tổng đó nhỏ 1 thì chúng ta phải xét xem có bao nhiêu lũy thừa hoặc sht thì ta sẽ lấy 1 : cho số số hạng )
1/100^2<1/2
=>A<1
*Có : 52 < 5.6 => \(\frac{1}{5^2}>\frac{1}{5.6}\)
62 < 6.7 =>\(\frac{1}{6^2}>\frac{1}{6.7}\)
....
1002 < 100 . 101 => \(\frac{1}{100^2}>\frac{1}{100.101}\)
Cộng từng vế có :
\(\frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{100^2}>\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{100.101}\)
\(A>\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...\frac{1}{100}-\frac{1}{101}\)
\(A>\frac{1}{5}-\frac{1}{101}\)
Mà \(\frac{1}{5}-\frac{1}{101}=\frac{101-5}{105}=\frac{96}{505}\)
=> \(A>\frac{96}{505}\)
Mà \(\frac{1}{6}=\frac{96}{576}< \frac{96}{505}\)
=> \(A>\frac{1}{6}\)(1)
*Có 52 > 5.4 => \(\frac{1}{5^2}< \frac{1}{5.4}\)
.......
1002 > 100.99 => \(\frac{1}{100^2}< \frac{1}{100.99}\)
Cộng từng vế có :
........ => A < \(\frac{96}{400}\)
Có \(\frac{1}{4}=\frac{100}{400}>\frac{96}{400}\)
=> A < \(\frac{1}{4}\)(2)
Từ (1)(2) => đpcm
\(\text{Ta thấy :}\)
\(\frac{1}{5^2}>\frac{1}{5.6}\)
\(\frac{1}{6^2}>\frac{1}{6.7}\)
\(......................................\)
\(\frac{1}{100^2}>\frac{1}{100.101}\)
\(\Rightarrow A=\frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{100^2}>\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{100.101}\)
\(\Rightarrow A>\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...\frac{1}{100}-\frac{1}{101}\)
\(\Rightarrow A>\frac{1}{5}-\frac{1}{101}=\frac{101-5}{105}=\frac{96}{505}>\frac{96}{576}=\frac{1}{6}\)
\(\Rightarrow A>\frac{1}{6}\left(1\right)\)
\(\text{Lại thấy :}\)
\(\frac{1}{5^2}< \frac{1}{5.4}\)
\(\frac{1}{6^2}< \frac{1}{5.6}\)
\(..................................\)
\(\frac{1}{100^2}< \frac{1}{100.99}\)
\(\text{Tương tự như trên ta tính được }:\)
\(A< \frac{96}{400}< \frac{100}{400}=\frac{1}{4}\)
\(\Rightarrow A< \frac{1}{4}\left(2\right)\)
\(\text{Từ (1) và (2)}\Rightarrow\frac{1}{6}< A< \frac{1}{4}\)
1/5^2< 1/4.5=1/4-1/5
1/6^2<1/5.6=1/5-1/6
..
1/99^2<1/98.99=1/98-1/99
1/100^2<1/99.100=1/99-1/100
Cộng vế theo vế, đơn giản:
=> 1/5^2+1/6^2+...+1/100^2< 1/4 -1/100<1/4
**
1/5^2> 1/5.6=1/5-1/6
1/6^2>1/6.7=1/6-1/7
1/99^2>1/99.100=1/99-1/100
1/100^2>1/100.101=1/100-1/101
Cộng vế theo vế, đơn giản:
=> 1/5^2+1/6^2+...+1/100^2>1/5 -1/101=96/505>1/6
Vậy:
1/6<1/5^2+1/6^2+...+1/100^2<1/4.
\(\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{100^2}<\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}=\frac{1}{2}-\frac{1}{100}<\frac{1}{2}\)
\(\RightarrowĐPCM\)
bạn cho mình hỏi sao lại biến đổi thành 1/2.3+...
trong khi nó là 1/3^2+... cơ mà