chứng minh rằng:
(a^2+b^2)(c^2+d^2)=(ac+bd)^2 (ad-bc)^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(a^2+b^2\right)\left(c^2+d^2\right)=a^2c^2+a^2d^2+b^2c^2+b^2d^2=\left(a^2c^2+2abcd+b^2d^2\right)+\left(a^2d^2-2abcd+b^2c^2\right)\)
\(=\left(ac+bd\right)^2+\left(ad-bc\right)^2\)
\(VT=\left(ac\right)^2+\left(bc\right)^2+\left(ad\right)^2+\left(bd\right)^2\)
\(VP=\left(ac^2\right)+2acbd+\left(bd\right)^2+\left(ad\right)^2-2adbc+\left(bc\right)^2=\left(ac\right)^2+\left(bc\right)^2+\left(ad\right)^2+\left(bd\right)^2\)
\(VT=VP\)
Ta sẽ biến đổi vế phải bằng vế trái :
Ta có :
\(\left(ac+bd\right)^2+\left(ad-bc\right)^2=\left(a^2c^2+b^2d^2+2abcd\right)+\left(a^2d^2+b^2c^2-2abcd\right)=\left(a^2c^2+b^2c^2\right)+\left(b^2d^2+a^2d^2\right)=c^2\left(a^2+b^2\right)+d^2\left(a^2+b^2\right)=\left(a^2+b^2\right)\left(c^2+d^2\right)\)
Vậy \(\left(a^2+b^2\right)\left(c^2+d^2\right)=\left(ac+bd\right)^2+\left(ad-bc\right)^2\)
\(VT=a^2c^2+2abcd+b^2d^2+a^2d^2-2abcd+b^2c^2\)
\(=a^2c^2+a^2d^2+b^2d^2+b^2c^2\)
\(=\left(c^2+d^2\right)\cdot\left(a^2+b^2\right)\)
\((ac + bd)^2 + (ad – bc)^2 = (ac)^2 +(bd)^2 + 2(ac)(bd) + (ad)^2 +(bc)^2 - 2(ad)(bc) \)
\( = (ac)^2 +(bd)^2 + (ad)^2 +(bc)^2 + 2abcd – 2abcd\)
\(= a^2c^2 + b^2d^2 + a^2d^2 + b^2c^2\)
\( = (a^2 + b^2)(c^2 + d^2)\)
➤ \((ac + bd)^2 + (ad – bc)^2 = (a^2 + b^2)(c^2 + d^2)\)
VP =(ac+bd)2+(ad-bc)2=a2c2+2abcd+b2d2+a2d2-2abcd+b2c2
=a2c2+b2d2+a2d2+b2c2
=(a2c2+b2c2)+(b2d2+a2d2)
=c2.(a2+b2)+d2.(a2+b2)
=(a2+b2)(c2+d2)= VT ( điều phải chứng minh)
Ta có:
\(VP=\left(ac+bd\right)^2+\left(ad-bc\right)^2\)
\(=a^2c^2+2acbd+b^2d^2+a^2d^2-2abcd+b^2c^2\)
\(=a^2c^2+b^2d^2+a^2d^2+b^2c^2=c^2.\left(a^2+b^2\right)+d^2.\left(a^2+b^2\right)\)
\(=\left(a^2+b^2\right)\left(c^2+d^2\right)=VT\)
Vậy \(\left(a^2+b^2\right)\left(c^2+d^2\right)=\left(ac+bd\right)^2+\left(ad-bc\right)^2\)(đpcm)
Chúc bạn học tốt!!!
\(\left(a^2-b^2\right)\left(d^2-c^2\right)=\left(ad+bc\right)^2-\left(ac+bd\right)^2\)
\(\Leftrightarrow a^2d^2-a^2c^2-b^2d^2+b^2c^2=a^2d^2+2adbc+b^2c^2-a^2c^2-2acbd-b^2d^2\)
\(\Leftrightarrow a^2d^2-a^2c^2-b^2d^2+b^2c^2=a^2d^2+b^2c^2-a^2c^2-b^2d^2\)
\(\Leftrightarrow-a^2c^2-b^2d^2+b^2c^2=b^2c^2-a^2c^2-b^2d^2\)
\(\Leftrightarrow-b^2d^2+b^2c^2=b^2c^2-b^2d^2\)
\(\Leftrightarrow b^2c^2=b^2c^2\)