K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 7 2016

a, \(2.16\ge2^n>4\)

\(\Leftrightarrow2.2^4\ge2^n>2^2\)

\(\Leftrightarrow2^5>2^n>2^2\)

\(\Leftrightarrow5\ge n>2\)

Vậy \(n\in\left\{3;4;5\right\}\)

b, Câu b làm tương tự nhé!

15 tháng 7 2016

a)2^5 lớn hơn hoặc bằng 2^n lớn hơn 2^2

suy ra n=4;3

b)243 nhỏ hơn , bằng 3^n nhỏ hơn hoặc = 243

suy ra n=5

5 tháng 6 2017

a).

\(2.16=2.2^4=2^5\\ 4=2^2\)

theo đề bài, ta có: \(2^5\ge2^n>2^2\Rightarrow5\ge n>2\)

vì n là số tự nhiên nên : \(n=5;4;3\)

b).

\(9.27=3^2.3^3=3^5\\ 243=3^5\)

theo đề bài, ta có: \(3^5\le3^n\le3^5\Rightarrow5\le n\le5\)

=> n=5

5 tháng 6 2017

Giải:

a)2.16\(\ge\)2n>4

2.24\(\ge\)2n>22

25\(\ge\)2n>22

\(\Rightarrow\)5\(\ge\)n>2

\(\Rightarrow\)n\(\in\){3;4;5}

b)9.27\(\le\)3n\(\le\)243

32.33\(\le\)3n\(\le\)35

35\(\le\)3n\(\le\)35

5\(\le\)n\(\le\)5

\(\Rightarrow\)n=5

24 tháng 7 2018

a, \(2.16\ge2^n>4\Rightarrow2^5\ge2^n>2^2\Rightarrow5\ge n>2\Rightarrow n\in\left\{3;4;5\right\}\)

b,\(9.27\le3^n\le243\Rightarrow3^5\le3^n\le3^5\Rightarrow n=5\)

2 tháng 10 2021

a) \(\Rightarrow\left(n+1\right)+5⋮\left(n+1\right)\)

\(\Rightarrow\left(n+1\right)\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\)

Do \(n\in N\)

\(\Rightarrow n\in\left\{0;4\right\}\)

b) \(\Rightarrow2\left(2n+1\right)+7⋮\left(2n+1\right)\)

\(\Rightarrow\left(2n+1\right)\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)

Do \(n\in N\)

\(\Rightarrow n\in\left\{0;3\right\}\)

2 tháng 11 2023

Để n + 6 ⋮ n + 1 thì :

⇒ n + 1 + 5 ⋮ n + 1 mà n + 1 ⋮ n + 1

    Như thế 5 ⋮ n + 1 và n + 1 ∈ Ư(5)

⇒ Ư(5)={ 1;5 } 

n + 1 = 1 ⇒ n = 0

n + 1 = 5 ⇒ n = 4

   Vậy .............

29 tháng 12 2023

a, Ta có : 8 ⋮ n + 1

=> n + 1∈ Ư(8) ∈ {1;2;4;8} ( Vì đề bạn là số tự nhiên nha)

=> n ∈ {0;1;3;7}

b, 10n + 14 ⋮ 2n + 2

=> (10n + 10) + 4 ⋮ 2n + 2

=> 5(2n + 2) + 4 ⋮ 2n + 2

Vì 5(2n + 2) ⋮ 2n + 2 nên 4 ⋮ 2n + 2

=> 2n + 2 ∈ Ư(4) ∈ {1;2;4)

=> 2(n + 1) ∈ {1;2;4}

Mà 2(n + 1) luôn chẵn => 2(n + 1) = 2;4

=> n = 0;1

29 tháng 12 2023

Giúp mình với ạ. Mình đang cần gấp!!!

28 tháng 10 2021

a) \(\left(n+6\right)⋮\left(n+1\right)\Rightarrow\left(n+1\right)+5⋮\left(n+1\right)\)

\(\Rightarrow\left(n+1\right)\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\)

Do \(n\in N\)

\(\Rightarrow n\in\left\{0;4\right\}\)

b) \(\left(4n+9\right)⋮\left(2n+1\right)\Rightarrow2\left(2n+1\right)+7⋮\left(2n+1\right)\)

\(\Rightarrow\left(2n+1\right)\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)

Do \(n\in N\)

\(\Rightarrow n\in\left\{0;3\right\}\)

Bài làm:

\(32< 2^n< 128\) 

hay \(2^5< 2^n< 2^7\)

\(\Rightarrow n=6\)

b, \(2\cdot16\ge2^n>4\)

hay \(32\ge2^n>4\)

\(2^5\ge2^n>2^2\)

\(\Rightarrow n\varepsilon\left(3,4,5\right)\)

c, \(9\cdot27\le3^n\le243\)

hay \(63\le3^n\le243\)

\(63\le3^n\le3^5\)

=> \(n\varepsilon\left(3;4\right)\)

#chúc bạn học tốt

Sorry, mình nhầm, câu c n thuộc (4;5) sorry bạn mong bạn bỏ qua

30 tháng 9 2018

câu a,

ta có: \(n\in N\)

\(32< 2^n< 128\Leftrightarrow2^5< 2^n< 2^7\)

=>n=6

câu b,

ta có:\(n\in N\)

\(2.16\ge2^n>4\\ \Leftrightarrow2.2^4\ge2^n>2^2\\ \Leftrightarrow2^5\ge2^n>2^2\\ \Rightarrow n\in\left\{5;4;3\right\}\)

câu c,

ta có:\(n\in N\)

\(\text{9 ⋅ 27 ≤ 3^n ≤ 243 }\)

\(\Leftrightarrow3^2.3^3\le3^n< 3^5\\ \Leftrightarrow3^5\le3^n< 3^5\\ \Rightarrow n\in\varnothing\)

7 tháng 11 2021

\(2.32\ge2^n>8\\ \Rightarrow2^6\ge2^n>2^3\\ \Rightarrow n\in\left\{4;5;6\right\}\)

7 tháng 11 2021

\(2.32=2.2^5=2^6\ge2^n>8=2^3\)

Do \(n\in N\)

\(\Rightarrow n\in\left\{6;5;4\right\}\)

a: \(\Leftrightarrow2^5\ge2^n>2^2\)

=>2<n<=5

hay \(n\in\left\{3;4;5\right\}\)

b: \(\Leftrightarrow3^2\cdot3^3\le3^n\le3^5\)

=>5<=n<=5

=>n=5