K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 3 2022

Bài 4:

\(28x^3+6x^2+12x+8=0\)

\(\Leftrightarrow28x^3+14x^2-8x^2-4x+16x+8=0\)

\(\Leftrightarrow14x^2\left(2x+1\right)-4x\left(2x+1\right)+8\left(2x+1\right)=0\)

\(\Leftrightarrow\left(2x+1\right)\left(14x^2-4x+8\right)=0\)

\(\Leftrightarrow\left(2x+1\right)\left(x^2-\dfrac{2}{7}x+\dfrac{4}{7}\right)=0\)

\(\Leftrightarrow2x+1=0\) hay \(\left(x^2-\dfrac{2}{7}x+\dfrac{4}{7}\right)=0\)

\(\Leftrightarrow x=\dfrac{-1}{2}\) hay \(x^2-2.\dfrac{1}{7}x+\dfrac{1}{49}+\dfrac{27}{49}=0\)

\(\Leftrightarrow x=\dfrac{-1}{2}\) hay  \(\left(x-\dfrac{1}{7}\right)^2+\dfrac{27}{49}=0\) (vô nghiệm vì \(\left(x-\dfrac{1}{7}\right)^2+\dfrac{27}{49}\ge\dfrac{27}{49}\))

-Vậy \(S=\left\{\dfrac{-1}{2}\right\}\)

17 tháng 3 2022

Bài 3: 

a) AB//CD \(\Rightarrow\widehat{BAM}=\widehat{ACD}\) (so le trong)

\(\widehat{AMB}=\widehat{ADC}=90^0\)

\(\Rightarrow\)△ABM∼△CAD (g-g).

b) △ADC vuông tại D \(\Rightarrow AD^2+DC^2=AC^2\Rightarrow AD^2+AB^2=AC^2\Rightarrow AC=\sqrt{AD^2+AB^2}=\sqrt{9^2+12^2}=15\left(cm\right)\)△ADC có DN phân giác \(\Rightarrow\dfrac{NA}{NC}=\dfrac{DA}{DC}\)

\(\Rightarrow\dfrac{NA}{DA}=\dfrac{NC}{DC}=\dfrac{NA+NC}{DA+DC}=\dfrac{AC}{DA+DC}\)

\(\Rightarrow NC=\dfrac{AC.DC}{DA+DC}=\dfrac{15.12}{9+12}=\dfrac{60}{7}\left(cm\right)\)

△ADC có NK//AD (cùng vuông góc với DC) \(\Rightarrow\dfrac{NK}{AD}=\dfrac{NC}{AC}\)

\(\Rightarrow NK=\dfrac{NC}{AC}.AD=\dfrac{\dfrac{60}{7}}{15}.9=\dfrac{36}{7}\left(cm\right)\)

c) △ABM∼△CAD \(\Rightarrow\dfrac{BM}{AD}=\dfrac{AM}{CD}\Rightarrow\dfrac{BM}{AM}=\dfrac{AD}{CD}\Rightarrow\dfrac{BM}{AM}=\dfrac{AN}{CN}\)

\(\Rightarrow BM.CN=AM.AN\)

△BMC∼△ABC (g-g)\(\Rightarrow\dfrac{BM}{AB}=\dfrac{BC}{AC}\Rightarrow BM=\dfrac{AB.BC}{AC}\Rightarrow\dfrac{1}{BM}=\dfrac{AC}{AB.BC}\Rightarrow\dfrac{1}{BM^2}=\dfrac{AC^2}{AB^2.BC^2}=\dfrac{AB^2+BC^2}{AB^2.BC^2}=\dfrac{1}{AB^2}+\dfrac{1}{BC^2}\)

a: Xét (O) có

MA là tiếp tuyến

MB là tiếp tuyến

Do đó: MA=MB

hay M nằm trên đường trung trực của AB(1)

Ta có: OA=OB

nên O nằm trên đường trung trực của AB(2)

Từ (1) và (2) suy ra OM⊥AB

Bài 3:

Số học sinh kém là:

40-8-10-20=2(bạn)

Tỉ số phần trăm giữa số học sinh giỏi so với lớp là:

8:40=20%

Tỉ số phần trăm giữa số học sinh khá so với lớp là:

20:40=50%

Tỉ số phần trăm giữa số học sinh trung bình so với lớp là:

10:40=25%

Tỉ số phần trăm giữa số học sinh yếu so với lớp là:

2:40=5%

14 tháng 4 2022

dạ em cảm ơn ạ , mong anh có thể giúp em hai bài 1 , 2 nữa với ạ

 

10 tháng 3 2022

bài 3: 

tổng số giờ đã chảy đc từ 2 vòi : 1+1=2(giờ)

tổng số phần bể đã chảy được từ 2 vòi : \(\dfrac{1}{5}+\dfrac{1}{7}=\dfrac{7}{35}+\dfrac{5}{35}=\dfrac{12}{35}\left(ph\text{ần} b\text{ể}\right)\)

nếu chảy cùng lúc mỗi giờ chảy được : \(\dfrac{12}{35}:2=\dfrac{12}{35\cdot2}=\dfrac{6}{35}\left(ph\text{ần}b\text{ể}\right)\)

bài 4:

cách 1:

độ dài đoạn AB là : \(\dfrac{3}{4}+\dfrac{9}{8}=\dfrac{18}{24}+\dfrac{27}{24}=\dfrac{45}{24}\left(m\right)\)

diện tích ABCD là : \(\dfrac{45}{27}\cdot\dfrac{4}{7}=\dfrac{15}{14}\left(m^2\right)\)

cách 2: 

diện tích AEFD là : \(\dfrac{3}{4}\cdot\dfrac{4}{7}=\dfrac{3}{7}\left(m^2\right)\)

diện tích EBCF là : \(\dfrac{9}{8}\cdot\dfrac{4}{7}=\dfrac{9}{14}\left(m^2\right)\)

diện tích ABCD là : \(\dfrac{3}{7}+\dfrac{9}{14}=\dfrac{15}{14}\left(m^2\right)\)

 

 

10 tháng 3 2022

Tách ra nhé bn !!

23 tháng 5 2021

o.nhìn.rõ

 

23 tháng 3 2022

1.      What size shoes do you take?

2.      What newspaper do you read?

3.      What color are your eyes?

4.      What time did you arrive this morning?

5.      What kind of film do you like?

6.      How tall is your teacher?

7.      How far is it from your house to the office?

8.      How much did you pay for your new shirt?

9.      How often do you take an English test in class?

10.  How long have you been studying English?

14 tháng 10 2021

1 was given

2 have repaired

3 had finished

4 isn't reading

5 had talked

1 was found

2 are always

8 ko có từ

9 have become

10 had met

11 aren't

12 arrives

13 is repairing

14 was built

15 had finished

16 will stay

14 tháng 11 2023

Bài 11

Gọi x (học sinh), y (học sinh), z (học sinh), t (học sinh) lần lượt là số học sinh giỏi của khối 6; 7; 8; 9 (x, y, z, t ∈ ℕ*)

Do số học sinh giỏi của khối 6; 7; 8; 9 tỉ lệ với 13; 12; 14; 15 nên ta có:

x/13 = y/12 = z/14 = t/15

Do tổng số hocj sinh giỏi của khối 6; 7 và 8 hơn số học sinh giỏi của khối 9 là 168 em nên:

x + y + z - t = 168

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

x/13 = y/12 = z/14 = t/15 = (x + y + z - t)/(13 + 12 + 14 - 15) = 168/24 = 7

x/13 = 7 ⇒ x = 7.13 = 91

y/12 = 7 ⇒ y = 7.12 = 84

z/14 = 7 ⇒ z = 7.14 = 98

t/15 = 7 ⇒ t = 7.15 = 105

Vậy số học sinh giỏi của khối 6; 7; 8; 9 lần lượt là: 91 học sinh, 84 học sinh, 98 học sinh, 105 học sinh

14 tháng 11 2023

Bài 12

Gọi x (học sinh), y (học sinh), z (học sinh) lần lượt là số học sinh cú khối 7; 8 và 9 (x, y, z ∈ ℕ*)

Do số học sinh của khối 6, khối 7, khối 8 lần lượt tỉ lệ với 10; 9; 8 nên ta có:

x/10 = y/9 = z/8

Do số học sinh khối 8 ít hơn số học sinh khối 7 là 50 em nên:

x - y = 50

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

x/10 = y/9 = z/8 = (x - y)/(10 - 9) = 50/1 = 50

x/10 = 50 ⇒ x = 50.10 = 500

y/9 = 50 ⇒ y = 50.9 = 450

z/8 = 50 ⇒ z = 50.8 = 400

Vậy số học sinh của khối 7, khối 8, khối 9 lần lượt là: 500 học sinh, 450 học sinh, 400 học sinh

a: Δ=(m-2)^2-4(m-4)

=m^2-4m+4-4m+16

=m^2-8m+20

=m^2-8m+16+4

=(m-2)^2+4>=4>0

=>Phương trình luôn có 2 nghiệm pb

b: x1^2+x2^2

=(x1+x2)^2-2x1x2

=(m-2)^2-2(m-4)

=m^2-4m+4-2m+8

=m^2-6m+12

=(m-3)^2+3>=3

Dấu = xảy ra khi m=3