Cho tam giác ABC vuông cân tại A. Qua A vẽ đường thẳng d không cắt cạnh BC. Gọi E, F lần lượt là hình chiếu của B và C trên d. CMR: a) BE + CF = EF
b) Xác định vị trí của đường thẳng d để A là trung điểm của EFng cân tại A. Qua A vẽ đt d không cắt cạnh BC. Gọi E, F lần lượt là hình chiếu vuông góc của B và C trên d
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 2:
a: Xét ΔABC có AD/AB=AE/AC
nên DE//BC
=>BDEC là hình thang
mà góc B=góc C
nên BDEC là hình thang cân
b: Xét ΔDEB có
N là trung điểm của DE
M là trung điểm của DB
Do đó: MN là đường trung bình
=>MN//EB và MN=EB/2(1)
Xét ΔECB có
P là trung điểm của EC
Q là trung điểm của BC
Do đó: PQ là đường trung bình
=>PQ//BE và PQ=BE/2(2)
từ (1) và (2) suy ra MN//PQ và MN=PQ
=>MNPQ là hình bình hành
Xét ΔDEC có
N là trung điểm của DE
P là trung điểm của EC
Do đó: NP là đường trung bình
=>NE=DC/2=NM
=>NMQP là hình thoi
a: Xét tứ giác AHMK có \(\widehat{AHM}+\widehat{AKM}=90^0+90^0=180^0\)
nên AHMK là tứ giác nội tiếp đường tròn đường kính AM
Tâm là trung điểm của AM
b: Xét (O) có
\(\widehat{BAD}\) là góc nội tiếp chắn cung BD
\(\widehat{BCD}\) là góc nội tiếp chắn cung BD
Do đó: \(\widehat{BAD}=\widehat{BCD}\left(1\right)\)
Ta có: AKMH là tứ giác nội tiếp
=>\(\widehat{KAM}=\widehat{KHM}\)
=>\(\widehat{BAD}=\widehat{KHM}\left(2\right)\)
Từ (1),(2) suy ra \(\widehat{BCD}=\widehat{KHM}\)
Xét (O) có
\(\widehat{DAC}\) là góc nội tiếp chắn cung DC
\(\widehat{DBC}\) là góc nội tiếp chắn cung DC
Do đó: \(\widehat{DAC}=\widehat{DBC}\left(3\right)\)
Ta có: AHMK là tứ giác nội tiếp
=>\(\widehat{MAH}=\widehat{MKH}=\widehat{DAC}\left(4\right)\)
Từ (3),(4) suy ra \(\widehat{DBC}=\widehat{MKH}\)
Xét ΔMKH và ΔDBC có
\(\widehat{MKH}=\widehat{DBC}\)
\(\widehat{MHK}=\widehat{DCB}\)
Do đó: ΔMKH~ΔDBC
1) ta có góc BAF+góc DAE=90 ĐỘ
góc DAK +góc DAE=90 ĐỘ
=> góc BAF= góc DAK
XÉT 2 TAM GIÁC TRÊN THEO TRƯỜNG HỢP G.C.G
=>tam giác ABF=tam giác DAK
==>AK=AF => tam giác AKF cân tại A
2)XÉT TAM GIÁC VUÔNG KCF CÓ I LÀ TRUNG ĐIỂM CỦA CẠNH HUYỀN KF nên A,F,K thuộc đường tròn đường kính KF (1)
TƯƠNG TỰ VỚI TAM GIÁC VUÔNG AKF ==> A,K,F cùng thuộc đường tròn đường kính KF (2)
TỪ (1) và (2) ==> điều cần chứng minh
3)vì tam giác AKF cân tại A ==> AI là trung tuyến đồng thời là đường cao
==> AI vuông góc với KF
DO ĐÓ góc AIF=90 độ
tương tự câu 2 xét vào 2 tam giác vuông AIF và ABF ==>điều cần chứng minh
đợi một tí thí nữa mk giải típ mệt quá