Thu gọn biểu thức sau:
A=1+5+52+53+...+549+550
Mọi ng giải giùm mk nha. Đang cần gấp lắm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left\{2x-3\left(x-1\right)-5\left[x-4\left(3-2x\right)+10\right]\right\}.\left(-2x\right)\)
\(=\left\{2x-3x+3-5\left[x-12+8x+10\right]\right\}.\left(-2x\right)\)
\(=\left\{-x+3-5\left(7x-2\right)\right\}.\left(-2x\right)\)
\(=\left(-x+3-35x+10\right).\left(-2x\right)\)
\(=\left(-36x+13\right).\left(-2x\right)\)
\(=72x^2-26x\)
\(=\frac{21}{2}\left(\sqrt{4+2\sqrt{3}}+\sqrt{6-2\sqrt{5}}\right)^2-3\left(\sqrt{4-2\sqrt{3}}+\sqrt{6+2\sqrt{5}}\right)^2-15\sqrt{15}\)
\(=\frac{21}{2}\left(\sqrt{3}+1+\sqrt{5}-1\right)^2-3\left(\sqrt{3}-1+\sqrt{5}+1\right)^2-15\sqrt{15}\)
\(=\frac{15}{2}\left(\sqrt{3}+\sqrt{5}\right)^2-15\sqrt{15}\)
\(=\frac{15}{2}\left(8+2\sqrt{15}\right)-15\sqrt{15}\)
\(=60+15\sqrt{15}-15\sqrt{15}=60\)
Ta có:
\(P=\sqrt{\frac{15}{2}}\cdot\sqrt{\frac{10\left(a-1\right)^2}{3}}\\ =\sqrt{\frac{15}{2}\cdot\frac{10\left(a-1\right)^2}{3}}\\ =\sqrt{25\left(a-1\right)^2}\\ =5\left|a-1\right|\\ =\left[{}\begin{matrix}5\left(a-1\right)\left(a=1\right)\\5\left(1-a\right)\left(a< 1\right)\end{matrix}\right.\\ =\left[{}\begin{matrix}5a-5\\5-5a\end{matrix}\right.\)
P.s: Ko chắc lắm nha :v
\(A=43+24\sqrt{3}-8\sqrt{20+2\sqrt{\left(3\sqrt{3}+4\right)^2}}\)
\(=43+24\sqrt{3}-8\sqrt{20+2\left(3\sqrt{3}+4\right)}\)
\(=43+24\sqrt{3}-8\sqrt{28+6\sqrt{3}}\)
\(=43+24\sqrt{3}-8\sqrt{\left(3\sqrt{3}+1\right)^2}\)
\(=43+24\sqrt{3}-8\left(3\sqrt{3}+1\right)\)
\(=43-8=35\)
Ta có A = 5 + 52 + 53 + ... + 52021
5A = 52 + 53 + 54 + ... + 52022
5A - A = ( 52 + 53 + 54 + ... + 52022 ) - ( 5 + 52 + 53 + ... + 52021 )
4A = 52022 - 5
A = \(\dfrac{5^{2022}-5}{4}\)
Tìm chữ số tận cùng của kết quả mỗi phép tính sau:
a. 4915
b. 5410
c. 1120+11921+200022
A = 1 + 5 + 52 + 53 + ... + 549 + 550
5A = 5 + 52 + 53 + 54 + ... + 550 + 551
5A - A = (5 + 52 + 53 + 54 + ... + 550 + 551) - (1 + 5 + 52 + 53 + ... + 549 + 550)
4A = 551 - 1
\(A=\frac{5^{51}-1}{4}\)
A = 1 + 5 + 52 + 53 + ... + 549 + 550
5A = 5 + 52 + 53 + 54 + ... + 550 + 551
5A - A = (5 + 52 + 53 + 54 + ... + 550 + 551) - (1 + 5 + 52 + 53 + ... + 549 + 550)
4A = 551 - 1
$A=\frac{5^{51}-1}{4}$