K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 7 2016

  Cái này đâu cần tới qui nạp. Giải theo Fertma là được: 
- Phương pháp Fertma: Ta có n thuộc Z và 7 là số nguyên tố 
Nên n^7 đồng dư n (mod 7) 
=> n^7 - n đồng dư 0 (mod 7) 
=> n^7 - n chia hết cho 7 
- Phương pháp Qui nạp: Đặt A(n)=n^7 - n (cho dễ làm) 
+ n=0 => A(n)=0 chia hết cho 7 
+Giả sử n=k thì A(k)= k^7-k chia hết cho 7 
+Với n=k+1 thì 
A(k+1)= (k+1)^7-(k+1) 
= k^7 + 7k^6 + 21k^5 + 35k^4 + 35k^3 + 21k^2 + 7k +1 - k -1 
= k^7 - k + 7( k^6 +3k^5 + 5k^4 + 5k^3 +3k^2 +k) 
Do k^7-k chia hết cho 7 
& 7( k^6 +3k^5 + 5k^4 + 5k^3 +3k^2 +k) chia hết cho 7 
Suy ra: A(k+1) chia hết cho 7 
Vậy: n^7 - n chia hết cho 7 
*Chú ý: A(k+1) nghĩ là biểu thức A có biến kà k+1 chứ ko phải là A nhân cho (k+1) nhé, tương tự A(n), A(k) cũng thế. 
Mình đã cố gắng nhưng có thể vẫn còn sai sót mong các bạn thông cảm. Chúc bạn vui vẻ ^^!!

22 tháng 8 2017

\(A=N^5-N=N\left(N^4-1\right)=N\left(N^2-1\right)\left(N^2+1\right)=N\left(N-1\right)\left(N+1\right)\left(N^2+1\right)\)

NẾU N:5 DƯ 1\(\Rightarrow N=5K+1\)

\(\Rightarrow A=N.\left(5K+1-1\right)\left(N+1\right)\left(N^2+1\right)=N.5K.\left(N+1\right)\left(N^2+1\right)\)

...

Đến đây thì bí rồi nhé

19 tháng 2 2016

Xin lỗi, mình nhầm phải là không chia hết cho 9.

19 tháng 2 2016

Chia het cho may thi minh cung ko biet lam vi minh moi lop 5

25 tháng 6 2018

( n - 1 )( n + 1 ) - ( n - 7 )( n - 5 ) 

= ( n^2 + n - n - 1 ) - ( n^2 - 5n - 7n + 35 )

= n^2 - 1 - n^2 + 12n - 35

= -1 + 12n - 35

= 12n - 36

= 12( n - 3 ) \(⋮12\)

25 tháng 6 2018

\(\left(n-1\right)\left(n+1\right)-\left(n-7\right)\left(n-5\right)\)

\(=n^2-1-\left(n^2-12n+35\right)=n^2-1-n^2+12n-35\)

\(=12n-36=12\left(n-3\right)\)\(⋮12\)(đpcm).

10 tháng 11 2016

em gửi bài qua fb thầy chữa cho, tìm fb của thầy bằng sđt nhé: 0975705122

11 tháng 11 2016

em cam on thay a

24 tháng 7 2021

a) Ta có (n - 1)(n + 1) - (n - 7)(n - 5) 

= n2 - 1 - (n2 - 12n + 35)

= n2 - 1 - n2 + 12n - 35

= 12n - 36 = 12(n - 3) \(⋮12\forall n\inℤ\)

b) Ta có n(2n - 3) - 2n(n + 2) 

= 2n2 - 3n - 2n2 - 2n 

= - 5n \(⋮5\forall n\inℤ\)

31 tháng 7 2020

Ta có : \(n\left(n+2\right)-\left(n-7\right)\left(n-5\right)\)

\(=n^2+2n-n^2+7n+5n-35\)

\(=14n-35=7\left(2n-5\right)⋮7\) ( đpcm )

Vậy ...

12 tháng 7 2017

với n = 2k thì :

( 5.2k + 7 ) . ( 4.2k + 6 )

= ( 10k + 7 ) . ( 8k + 6 )

= ( 10k + 7 ) . 2 . ( 4k + 3 ) \(⋮\)2

với n = 2k + 1 thì :

[ 5 . ( 2k + 1 ) + 7 ] . [ 4 . ( 2k + 1 ) + 6 ]

= ( 10k + 5 + 7 ) . ( 8k + 4 + 6 )

= ( 10k + 12 ) . ( 8k + 10 )

= 2 . ( 5k + 6 ) . 2 . ( 4k + 5 ) \(⋮\)2

12 tháng 7 2017

Thanks, nhưng có thể làm kiểu phân phối của lớp 6 đc ko?

ôi bó tay bn ơi mk mới lên lớp 8 nên ko bít!!

7876876897978089099875876

23 tháng 6 2016

(n-1).(n+1)-(n-7).(n-5)

=n2-1-(n2-5n-7n+35)

=n2-1-n2+5n-7n-35

=-2n-36

Vậy với N thuộc Z thì (n-1).(n+1)-(n-7).(n-5) chia hết cho 12

5 tháng 4 2017

1)

a)251-1

=(23)17-1\(⋮\)23-1=7

Vậy 251-1\(⋮\)7

b)270+370

=(22)35+(32)35\(⋮\)22+32=13

Vậy 270+370\(⋮\)13

c)1719+1917

=(BS18-1)19+(BS18+1)17

=BS18-1+BS18+1

=BS18\(⋮\)18

d)3663-1\(⋮\)35\(⋮\)7

Vậy 3663-1\(⋮\)7

3663-1

=3663+1-2

=BS37-2\(⋮̸\)37

Vậy 3663-1\(⋮̸\)37

e)24n-1

=(24)n-1\(⋮\)24-1=15

Vậy 24n-1\(⋮\)15

13 tháng 8 2019

BS là gì vậy bạn???