K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 12 2021

Ta có \(\widehat{A}=90^0\Rightarrow\Delta ABC\) vuông tại \(A\)

\(a,\widehat{C}=90^0-\widehat{B}=30^0\\ AC=\tan B\cdot AB=\tan60^0\cdot8=8\sqrt{3}\left(cm\right)\\ BC=\dfrac{AB}{\sin C}=\dfrac{8}{\sin30^0}=16\left(cm\right)\\ b,S_{ABC}=\dfrac{1}{2}AB\cdot AC=\dfrac{1}{2}\cdot8\cdot8\sqrt{3}=32\sqrt{3}\left(cm^2\right)\)

25 tháng 7 2017

Bạn kể thêm đường cao và đặt ẩn là làm ra

31 tháng 12 2023

Xét ΔABC có \(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)

=>\(\widehat{C}=180^0-30^0-50^0=100^0\)

Xét ΔABC có \(\dfrac{AB}{sinC}=\dfrac{AC}{sinB}\)

=>\(\dfrac{AC}{sin50}=\dfrac{7}{sin100}\)

=>\(AC=7\cdot\dfrac{sin50}{sin100}\simeq5,45\)

Diện tích tam giác ACB là:

\(S_{ABC}=\dfrac{1}{2}\cdot AB\cdot AC\cdot sinBAC\)

\(\dfrac{\simeq1}{2}\cdot7\cdot5,45\cdot sin30\simeq9,54\left(đvdt\right)\)

a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=9^2+12^2=225\)

hay BC=15

Xét ΔABC vuông tại A có 

\(\sin\widehat{B}=\dfrac{AC}{BC}=\dfrac{12}{15}=\dfrac{4}{5}\)

nên \(\widehat{B}\simeq53^0\)

Ta có: ΔABC vuông tại A(gt)

nên \(\widehat{B}+\widehat{C}=90^0\)(Hai góc nhọn phụ nhau)

hay \(\widehat{C}=37^0\)

b) Xét ΔABC có AD là đường phân giác ứng với cạnh BC(gt)

nên \(\dfrac{BD}{AB}=\dfrac{CD}{AC}\)(Tính chất tia phân giác của tam giác)

hay \(\dfrac{BD}{9}=\dfrac{CD}{12}\)
mà BD+CD=BC(D nằm giữa B và C)

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{BD}{9}=\dfrac{CD}{12}=\dfrac{BD+CD}{9+12}=\dfrac{15}{21}=\dfrac{5}{7}\)

Do đó:

\(\left\{{}\begin{matrix}BD=\dfrac{45}{7}\left(cm\right)\\CD=\dfrac{60}{7}\left(cm\right)\end{matrix}\right.\)

c) Xét tứ giác AFDE có 

\(\widehat{AFD}=90^0\)

\(\widehat{AED}=90^0\)

\(\widehat{FAE}=90^0\)

Do đó: AFDE là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)

Hình chữ nhật AFDE có AD là tia phân giác của \(\widehat{FAE}\)(gt)

nên AFDE là hình vuông(Dấu hiệu nhận biết hình vuông)

15 tháng 11 2021

Giống mình làm

 

24 tháng 8 2016

a, tam giác ABC vuông tại B có góc A = 30 độ => AC = 2 BC = 2. 3 = 6 cm

theo định lí Pytago ta có AB = \(\sqrt{ÃC^2-BC^2}=\sqrt{6^2-3^2}\) = \(3\sqrt{3}\) cm

góc C = 90 - 30 = 60 độ

b, tam giác ABH vuông tại H có góc A = 30 độ => AB = 2 BH => BH = \(\frac{3\sqrt{3}}{2}\)cm

theo định lí Pytago ta có AH = \(\sqrt{AB^2-BH^2}=\sqrt{\left(3\sqrt{3}\right)^2-\left(\frac{3\sqrt{3}}{2}\right)^2}=4,5cm\)

diện tích tam giác ABH =\(\frac{1}{2}.BH.AH=\frac{1}{2}.\frac{3\sqrt{3}}{2}.4,5=\frac{27\sqrt{3}}{8}\)cm vuông

24 tháng 8 2016

mk bận quá k lm kịp 2 câu còn lại thông cảm nha