Từ A nằm ngoài (O;R) vẽ 2 tiếp tuyến AE , AF đến (O;R). Đường thẳng đi qua O vuông góc với OA cắt các tia AE, AF lần lượt tại B,C . Gọi D là điểm trên cung nhỏ EF của (O;R). Tiếp tuyến tại D của (O;R) cắt AB, AC lần lượt tại M,N
a) C/m tứ giác AEOF nội tiếp
b) Gọi DE cắt MO tại I, DF cắt No tại K . Chứng minh OI.OM=ON.Ok
c) C/m \(\Delta OMN\sim\Delta BMO\)
d) Khi D thay đổi trên cung nhỏ EF của (O;R) , tìm GTLN của \(S_{\Delta AMN}\)
a) Xét tứ giác AEOF có
\(\widehat{AEO}\) và \(\widehat{AFO}\) là hai góc đối
\(\widehat{AEO}+\widehat{AFO}=180^0\left(90^0+90^0=180^0\right)\)
Do đó: AEOF là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
câu c , d ????