K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 7 2016

A=1+2+2^2+2^3+...+2^2014

2A=2+2^2+2^3+2^4+...+2^2015

A=2^2015-1

=> A=B

13 tháng 7 2016

ta có A = 1+2+22+...+22014

=> 2A = 2+22+23+...+22015

=> 2A-A= (2+22+23+...+22015) - (1+2+22+...+22014)

=> A = 22015-1 = B

Vậy A=B

4 tháng 3 2017

5866680

4 tháng 3 2017

5866680

13 tháng 5 2019

\(x-y=x^3-y^3\Leftrightarrow x-y=\left(x-y\right)\left(x^2+xy+y^2\right)\Leftrightarrow\left(x-y\right)\left(x^2+xy+y^2-1\right)=0..\) 

\(\Leftrightarrow\orbr{\begin{cases}x-y=0\\x^2+xy+y^2=1\end{cases}.}\) Vì x và y dương nên xy >0  Do đó từ x2 + y2 + xy = 1 Suy ra :    x2 + y2 < 1 

27 tháng 1 2016

có :(1997-55):2+1=972 số 

28 tháng 1 2016

 dfbv

24 tháng 6 2016

b +a = ab     ;      ab =a/b

2a = 1        ;       b = -1

[a = 0,b =0]      

-ab+b+a=0

-(a-1)b-a=0

a-1=0       ;   b-1=0 

b=1       ;     b=0

ab=a/b ma ab-a/b =0

(b^2-1)a=0       ;b^2-1=0

1/b=0

kết quả là :  a=1/2

                  b=-1

1008 phân số mik ko biết đúng ko nữa nhưng cũng ủng hộ được ko ??

1 tháng 9 2023

a) \(A=1+2+2^2+...+2^{80}\)

\(2A=2+2^2+2^3+...+2^{81}\)

\(2A-A=2+2^2+2^3+...+2^{81}-1-2-2^2-...-2^{80}\)

\(A=2^{81}-1\)

Nên A + 1 là:

\(A+1=2^{81}-1+1=2^{81}\)

b) \(B=1+3+3^2+...+3^{99}\)

\(3B=3+3^2+3^3+...+3^{100}\)

\(3B-B=3+3^2+3^3+...+3^{100}-1-3-3^2-...-3^{99}\)

\(2B=3^{100}-1\)

Nên 2B + 1 là:

\(2B+1=3^{100}-1+1=3^{100}\)

1 tháng 9 2023

2) 

a) \(2^x\cdot\left(1+2+2^2+...+2^{2015}\right)+1=2^{2016}\)

Gọi:

\(A=1+2+2^2+...+2^{2015}\)

\(2A=2+2^2+2^3+...+2^{2016}\)

\(A=2^{2016}-1\)

Ta có:

\(2^x\cdot\left(2^{2016}-1\right)+1=2^{2016}\)

\(\Rightarrow2^x\cdot\left(2^{2016}-1\right)=2^{2016}-1\)

\(\Rightarrow2^x=\dfrac{2^{2016}-1}{2^{2016}-1}=1\)

\(\Rightarrow2^x=2^0\)

\(\Rightarrow x=0\)

b) \(8^x-1=1+2+2^2+...+2^{2015}\)

Gọi: \(B=1+2+2^2+...+2^{2015}\)

\(2B=2+2^2+2^3+...+2^{2016}\)

\(B=2^{2016}-1\)

Ta có:

\(8^x-1=2^{2016}-1\)

\(\Rightarrow\left(2^3\right)^x-1=2^{2016}-1\)

\(\Rightarrow2^{3x}-1=2^{2016}-1\)

\(\Rightarrow2^{3x}=2^{2016}\)

\(\Rightarrow3x=2016\)

\(\Rightarrow x=\dfrac{2016}{3}\)

\(\Rightarrow x=672\)

`#3107`

\(A=1+2^1+2^2+2^3+...+2^{2015}\)

\(2A=2+2^2+2^3+2^4+...+2^{2016}\)

\(2A-A=\left(2+2^2+2^3+2^4+...+2^{2016}\right)-\left(1+2+2^2+2^3+...+2^{2015}\right)\)

\(A=2+2^2+2^3+2^4+...+2^{2016}-1-2-2^2-2^3-...-2^{2015}\)

\(A=2^{2016}-1\)

Vậy, \(A=2^{2016}-1.\)

28 tháng 9 2023

\(A=2^0+2^1+2^2+...+2^{2015}\)

\(2\cdot A=2^1+2^2+2^3+...+2^{2016}\)

\(A=2A-A=2^{2016}-2^0\)

\(A=2^{2016}-1\)