K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(A=\frac{1}{2}-\frac{1}{2^2}+\frac{1}{2^3}-\frac{1}{2^4}+...+\frac{1}{2^{99}}-\frac{1}{2^{100}}\)

\(\frac{1}{2}A+A=\frac{3}{2}A=\frac{1}{2^2}-\frac{1}{2^3}+\frac{1}{2^4}-\frac{1}{2^5}+...+\frac{1}{2^{100}}-\frac{1}{2^{101}}+\frac{1}{2}-\frac{1}{2^2}+\frac{1}{2^3}-....+\frac{1}{2^{99}}-\frac{1}{2^{100}}\)

\(\frac{3}{2}A=\frac{1}{2}-\frac{1}{2^{101}}\Rightarrow A=\left(\frac{1}{2}-\frac{1}{2^{101}}\right):\frac{3}{2}=\frac{1}{3}-\frac{1}{3.2^{100}}\)

\(a=\frac{1}{2}-\frac{1}{2^2}+\frac{1}{2^3}-\frac{1}{2^4}+...+\frac{1}{2^{99}}-\frac{1}{2^{100}}.\)

\(\Leftrightarrow\frac{1}{2}a=\frac{1}{2}.\left(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{99}}+\frac{1}{2^{100}}\right)\)

\(\Leftrightarrow\frac{1}{2}a=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+\frac{1}{2^5}+...+\frac{1}{2^{100}}+\frac{1}{2^{101}}\)

\(\Leftrightarrow a-\frac{1}{2}a=\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^{\text{4}}}+\frac{1}{2^5}+...+\frac{1}{2^{100}}+\frac{1}{2^{101}}\right)\)

\(\Leftrightarrow\frac{1}{2}a=\frac{1}{2^{101}}-1=\frac{1}{2^{101}}-\frac{2^{101}}{2^{101}}=\frac{1-2^{101}}{2^{101}}\)

\(\Leftrightarrow a=\frac{1-2^{101}}{2^{101}}\div\frac{1}{2}=\frac{1-2^{101}}{2^{101}}.2=\frac{2\left(1-2^{101}\right)}{2^{101}}\)

\(\Rightarrow a=\frac{1-2^{101}}{2^{100}}\)

Vậy \(a=\frac{1-2^{101}}{2^{100}}\)

\(A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{99}}+\frac{1}{2^{100}}+\frac{1}{2^{100}}\)

=>\(2A=2+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{98}}+\frac{1}{2^{99}}+\frac{1}{2^{99}}\)

=>\(A=2A-A=2+\frac{1}{2^{99}}+\frac{1}{2^{99}}\)

\(A=2+\frac{1}{2^{98}}\)

Vậy: \(A=2+\frac{1}{2^{98}}\)

22 tháng 4 2017

Gọi \(B=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{100}}\)

\(\Rightarrow2B=2+1+\frac{1}{2}+...+\frac{1}{2^{99}}\)

\(\Rightarrow2B-B=\left(2+1+\frac{1}{2}+...+\frac{1}{2^{99}}\right)-\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{100}}\right)\)

\(\Rightarrow B=2-\frac{1}{2^{100}}\)

\(\Rightarrow A=2\)

Vậy A = 2

21 tháng 8 2016

b) A=\(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}\)

   3A=\(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}\)

3A-A=\(1-\frac{1}{3^{99}}\)

   2A=\(1-\frac{1}{3^{99}}\)

vì 2A<1

=> A<\(\frac{1}{2}\)

22 tháng 8 2016

anh làm cho e câu a nữa được không ạ

 

13 tháng 5 2020

a) \(A=\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{2019}}\)

\(5A=\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{2018}}\)

\(4A=5A-A=\frac{1}{5}-\frac{1}{5^{2019}}\)

\(A=\frac{1}{20}-\frac{1}{4.5^{2019}}< \frac{1}{20}< \frac{1}{2}\)

b)  Đề có sai không mà đằng cuối lại là \(\frac{1}{4^2}\)lặp lại lần nữa.
c) \(C=\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}\)

\(2C=1-\frac{1}{2}+\frac{1}{4}-\frac{1}{8}+\frac{1}{16}-\frac{1}{32}\)

\(3C=2C+C=1-\frac{1}{64}< 1\)

\(C< \frac{1}{3}\)

d) Xem lại đề nữa đi e, nếu trừ hai vế cho \(\frac{1}{3}\)thì vế trái > 0 > vế phải rồi
e)  \(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{50}>\frac{1}{50}+\frac{1}{50}+...+\frac{1}{50}\)(10 số hạng)
                                                    \(=\frac{10}{50}=\frac{1}{5}\)

Tương tự: \(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{60}>\frac{1}{6}\)

\(\frac{1}{61}+\frac{1}{62}+...+\frac{1}{70}>\frac{1}{7}\)

\(\frac{1}{71}+\frac{1}{72}+...+\frac{1}{80}>\frac{1}{8}\)

\(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{80}>\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}=\frac{533}{840}>\frac{490}{840}=\frac{7}{12}\)

11 tháng 3 2019

haha!dungs rois!

14 tháng 3 2019

trả lời: \(\frac{1}{100}\) nha

😁 😁 😁

2 tháng 4 2023

1+1=3 :)))

15 tháng 7 2017

a) \(\frac{x}{4}=\frac{16}{x^2}\)\(=>x^3=16.4\)\(=>x^3=64\)\(=>x=4\)

b) \(\frac{4}{3}:\frac{4}{5}=\frac{2}{3}.\left(\frac{1}{10}.x\right)\)\(=>\frac{4}{3}.\frac{5}{4}=\frac{2}{3}\left(\frac{1}{10}x\right)\)\(=>\frac{5}{3}=\frac{2}{3}\left(\frac{1}{10}x\right)\)\(=>\frac{5}{3}:\frac{2}{3}=\frac{1}{10}x\)\(=>\frac{5}{3}.\frac{3}{2}=\frac{1}{10}x\)\(=>\frac{5}{2}=\frac{1}{10}x\)\(=>x=\frac{5}{2}:\frac{1}{10}\)\(=>x=\frac{5}{2}.10\)\(=>x=25\)

vậy x=25

15 tháng 7 2017

1.

a) \(\frac{x}{4}=\frac{16}{x^2}\)

\(\Rightarrow x^3=64\)

\(\Rightarrow x^3=4^3\)

\(\Rightarrow x=4\)

b) \(1\frac{1}{3}:0,8=\frac{2}{3}.\left(0,1.x\right)\)

\(\frac{5}{3}=\frac{2}{3}.\frac{x}{10}\)

\(\frac{x}{10}=\frac{5}{2}\)

\(\Rightarrow x=\frac{5.10}{2}=25\)

2.

\(A=\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}+\frac{1}{3^{99}}\)

\(3A=1+\frac{1}{3}+...+\frac{1}{3^{97}}+\frac{1}{3^{98}}\)

\(3A-A=\left(1+\frac{1}{3}+...+\frac{1}{3^{97}}+\frac{1}{3^{98}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}+\frac{1}{3^{99}}\right)\)

\(2A=1-\frac{1}{3^{99}}< 1\)

\(\Rightarrow A=\frac{1-\frac{1}{3^{99}}}{2}< \frac{1}{2}\)

23 tháng 10 2017

A = \(\frac{1}{2}\)\(-\)\(\frac{1}{2^2}\)\(+\)\(\frac{1}{2^3}\)\(-\)\(\frac{1}{2^4}\)\(+\)........... \(+\)\(\frac{1}{2^{99}}\)\(-\)\(\frac{1}{2^{100}}\)

2A = 1 - \(\frac{1}{2}\)\(\frac{1}{2^2}\)\(\frac{1}{2^3}\)+.........+ \(\frac{1}{2^{98}}\)\(\frac{1}{2^{99}}\)

2A + A =( 1 - \(\frac{1}{2}\)\(\frac{1}{2^2}\)\(\frac{1}{2^3}\)+.........+ \(\frac{1}{2^{98}}\)\(\frac{1}{2^{99}}\)\(+\)\(\frac{1}{2}\)\(-\)\(\frac{1}{2^2}\)\(+\)\(\frac{1}{2^3}\)\(-\)\(\frac{1}{2^4}\)\(+\)........... \(+\)\(\frac{1}{2^{99}}\)\(-\)\(\frac{1}{2^{100}}\)

3A = 1 \(-\) \(\frac{1}{2^{100}}\)

\(\Rightarrow\)A = \(\frac{1-\frac{1}{2^{100}}}{3}\)\(\frac{1}{3}\)