Cho tam giác ABC, góc A=50 độ, I là giao điểm của 2 đường phân giác trong của góc B và góc C. K là giao điểm 2 đường phân giác ngoài của góc B và góc C
a) Tính góc BIC
b) Tính góc BKC
c) Chứng minh A, I, K thẳng hàng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Kẻ KE,KD,KF lần lượt vuông góc AB,BC,AC
Xét ΔBEK vuông tại E và ΔBDK vuông tại D có
BK chung
góc EBK=góc DBK
=>ΔBEK=ΔBDK
=>KD=KE
Xet ΔCDK vuông tại D và ΔCFK vuông tại F có
CK chung
góc DCK=góc FCK
=>ΔCDK=ΔCFK
=>KD=KF=KE
=>K cách đều AB,AC
b: góc ABC+góc ACB=180-50=130 độ
góc EBC+góc FCB=360 độ-130 độ=260 độ
=>góc KBC+góc KCB=130 độ
=>góc BKC=50 độ
Diễn giải:
- Khi cộng, trừ số thập phân ta tiến hành cộng hoặc trừ các phần tương ứng của các số đó.
Ví dụ 1:
Tính 0,25 + 2,5 ta làm như sau: 5 + 0 = 5 , 2 + 5 =7, 0 + 2 = 2. Vậy 0,25 + 2,5 = 2.75
Tính 8,6 - 2,7 ta làm như sau: 6 - 7 không trừ được ta lấy 16 - 7 = 9, tiếp tục 8 - 2 trừ thêm 1 nữa tức là 8 -3 = 5. Vậy 8,6 - 2,7 = 5,9
- Với phép nhân, chia các số thập phân ta cần viết chúng dưới dạng phân số.
a) Xét ΔABC có
\(\widehat{BAC}+\widehat{ABC}+\widehat{ACB}=180^0\)(Định lí tổng ba góc trong một tam giác)
\(\Leftrightarrow2\cdot\widehat{IBC}+2\cdot\widehat{ICB}=130^0\)
\(\Leftrightarrow\widehat{IBC}+\widehat{ICB}=65^0\)
Xét ΔIBC có
\(\widehat{BIC}+\widehat{IBC}+\widehat{ICB}=180^0\)(Định lí tổng ba góc trong một tam giác)
\(\Leftrightarrow\widehat{BIC}+65^0=180^0\)
hay \(\widehat{BIC}=115^0\)
Vậy: \(\widehat{BIC}=115^0\)
tự nghĩ đi lên mạng hỏi làm lol