K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 2 2019

4n+3 chia hết cho 3n-2 

<=> 3(4n+3)-4(3n-2) chia hết cho 3n-2

<=>17 chia hết cho 3n-2

<=>3n-2 E {-1;1;17;-17}

<=> 3n E {1;3;19;-15} loại các TH n ko nguyên

=>n  E {1;-5}. Vậy.....

16 tháng 2 2019

2n+3 chia hết cho n-1

<=> 2n+3-2(n-1) chia hết cho n-1

<=>5 chia hết cho n-1

<=> n-1 E {-1;1;5;-5}

<=> n E {0;2;6;-4}

bài nào chứ mấy bài này dài ngoằng =((

13 tháng 2 2020

a) -3n + 2 \(⋮\)2n + 1

<=> 2(-3n + 2) \(⋮\)2n + 1

<=> -6n + 4 \(⋮\)2n + 1

<=> -3(2n + 1) + 7 \(⋮\)2n + 1

<=> 7 \(⋮\)2n + 1

<=> 2n + 1 \(\in\)Ư(7) = {\(\pm\)1; \(\pm\)7}

Lập bảng:

2n + 1-11-77
n-10-43

Vậy n = {-1; 0; -4; 3}

b) n2 - 5n +7 \(⋮\)n - 5

<=> n(n - 5) + 7 \(⋮\)n - 5

<=> 7 \(⋮\)n - 5

<=> n - 5 \(\in\)Ư(7) = {\(\pm\)1; \(\pm\)7}

Lập bảng:

n - 5-11-77
n46-212

Vậy n = {4; 6; -2; 12}

c) (3 - x)(xy + 5) = -1

<=> (3 - x) và (xy + 5) \(\in\)Ư(-1)

Ta có: Ư(-1) \(\in\){-1; 1}

Lập bảng:

3 - x-11
x-42
xy + 51-1
y1-3

Vậy các cặp số (x; y) thỏa mãn lần lượt là (-4; 1) và (2; -3)

d) xy - 3x = 5

<=> x(y - 3) = 5

<=> x và y - 3 \(\in\)Ư(5)

Ta có: Ư(5) \(\in\){\(\pm\)1; \(\pm\)5}

Lập bảng:

x-11-55
y-3-55-11
y-2824

Vậy các cặp số (x; y) thỏa mãn lần lượt là (-1; -2); (1; 8); (-5; 2) và (5; 4)

e) xy - 2y + x = -5

<=> y(x - 2) + (x - 2) = -7

<=> (x - 2)(y + 1) = -7

<=> (x - 2) và (y + 1) \(\in\)Ư(-7)

Ta có: Ư(-7) \(\in\){\(\pm\)1; \(\pm\)7}

Lập bảng:

x - 2-11-77
x13-59
y + 17-71-1
y6-80-2

Vậy các cặp số (x; y) thỏa mãn lần lượt là (1; 6): (3; -8); (-5; 0) và (9; -2)

23 tháng 1 2017

hơi nhiều nhỉ

23 tháng 1 2017

Sao bạn đăng nhiều thế !

hoa mắt thì làm sao giải cho bạn được

23 tháng 11 2017

a) P = (4n-5)/(2n-1) = (4n-2 - 3)/(2n-1) = 2 - 3/(2n-1) 

P thuộc Z khi và chỉ khi 3/(2n-1) thuộc Z <=> 2n-1 là ước của 3 

* 2n - 1 = -1 <=> n = 0 

* 2n - 1 = -3 <=> n = -1 (loại, vì n tự nhiên) 

* 2n - 1 = 1 <=> n = 1 

* 2n - 1 = 3 <=> n = 2 

Vậy có 3 giá trị của n tự nhiên là: 0, 1, 2 

*kí hiệu thuộc vs ước bạn tự viết nha*

b) mk lười làm nên bạn tham khảo ở link này nha ^^: https://olm.vn/hoi-dap/question/12009.html

23 tháng 11 2017

a, ( 4n - 5 ) chia het cho ( 2n - 1 )

   => ( n + n + n + n - 1 - 1 - 1-1 -1) chia het cho ( 2n - 1 )

=>.  ( 2n + 2n - 1 - 1 - 3 ) chia het cho ( 2n -1 )

=> [ ( 2n - 1 ) + ( 2n - 1 ) - 3 ] chia het cho (2n-1)

Vi ( 2n-1) chia het cho ( 2n - 1 )

=> 3 chia het cho ( 2n - 1 )

=> 2n - 1 thuoc U(3)

=> 2n - 1 thuoc { 1; 3}

=> 2n thuoc { 0 ; 2 }

=> n thuoc { 0 ; 1 }

Vay n thuoc { 0; 2 }

Phan b, ban lm tuong tu nha !

Tham khao nha !

Bài 1:a) Ta có: \(1-3x⋮x-2\)

\(\Leftrightarrow-3x+1⋮x-2\)

\(\Leftrightarrow-3x+6-5⋮x-2\)

mà \(-3x+6⋮x-2\)

nên \(-5⋮x-2\)

\(\Leftrightarrow x-2\inƯ\left(-5\right)\)

\(\Leftrightarrow x-2\in\left\{1;-1;5;-5\right\}\)

hay \(x\in\left\{3;1;7;-3\right\}\)

Vậy: \(x\in\left\{3;1;7;-3\right\}\)

b) Ta có: \(3x+2⋮2x+1\)

\(\Leftrightarrow2\left(3x+2\right)⋮2x+1\)

\(\Leftrightarrow6x+4⋮2x+1\)

\(\Leftrightarrow6x+3+1⋮2x+1\)

mà \(6x+3⋮2x+1\)

nên \(1⋮2x+1\)

\(\Leftrightarrow2x+1\inƯ\left(1\right)\)

\(\Leftrightarrow2x+1\in\left\{1;-1\right\}\)

\(\Leftrightarrow2x\in\left\{0;-2\right\}\)

hay \(x\in\left\{0;-1\right\}\)

Vậy: \(x\in\left\{0;-1\right\}\)

8 tháng 2 2021

Bài 1 :

a, Có : \(1-3x⋮x-2\)

\(\Rightarrow-3x+6-5⋮x-2\)

\(\Rightarrow-3\left(x-2\right)-5⋮x-2\)

- Thấy -3 ( x - 2 ) chia hết cho  x - 2

\(\Rightarrow-5⋮x-2\)

- Để thỏa mãn yc đề bài thì : \(x-2\inƯ_{\left(-5\right)}\)

\(\Leftrightarrow x-2\in\left\{1;-1;5;-5\right\}\)

\(\Leftrightarrow x\in\left\{3;1;7;-3\right\}\)

Vậy ...

b, Có : \(3x+2⋮2x+1\)

\(\Leftrightarrow3x+1,5+0,5⋮2x+1\)

\(\Leftrightarrow1,5\left(2x+1\right)+0,5⋮2x+1\)

- Thấy 1,5 ( 2x +1 ) chia hết cho  2x+1

\(\Rightarrow1⋮2x+1\)

- Để thỏa mãn yc đề bài thì : \(2x+1\inƯ_{\left(1\right)}\)

\(\Leftrightarrow2x+1\in\left\{1;-1\right\}\)

\(\Leftrightarrow x\in\left\{0;-1\right\}\)

Vậy ...

24 tháng 6 2018

6   \(n^5+5n=n^5-n+6n=n\left(n^4-1\right)+6n=n\left(n^2-1\right)\left(n^2+1\right)+6n\)

\(=n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)+6n\)

vì n,n-1 là 2 số nguyên lien tiếp  \(\Rightarrow n\left(n-1\right)⋮2\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮2\)

  n,n-1,n+1 là 3 sô nguyên liên tiếp \(\Rightarrow n\left(n-1\right)\left(n+1\right)⋮3\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮3\)

\(\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮2\cdot3=6\)

\(6⋮6\Rightarrow6n⋮6\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)-6n⋮6\Rightarrow n^5+5n⋮6\)(đpcm)

7   \(n\left(2n+7\right)\left(7n+1\right)=n\left(2n+7\right)\left(7n+7-6\right)=7n\left(n+1\right)\left(2n+7\right)-6n\left(2n+7\right)\)

\(=7n\left(n+1\right)\left(2n+4+3\right)-6n\left(2n+7\right)\)

\(=7n\left(n+1\right)\left(2n+4\right)+21n\left(n+1\right)-6n\left(2n+7\right)\)

\(=14n\left(n+1\right)\left(n+2\right)+21n\left(n+1\right)-6n\left(2n+7\right)\)

n,n+1,n+2 là 3 sô nguyên liên tiếp dựa vào bài 6 \(\Rightarrow n\left(n+1\right)\left(n+2\right)⋮6\Rightarrow14n\left(n+1\right)\left(n+2\right)⋮6\)

\(21⋮3;n\left(n+1\right)⋮2\Rightarrow21n\left(n+1\right)⋮3\cdot2=6\)

\(6⋮6\Rightarrow6n\left(2n+7\right)⋮6\)

\(\Rightarrow14n\left(n+1\right)\left(n+2\right)+21n\left(n+1\right)-6n\left(2n+7\right)⋮6\)

\(\Rightarrow n\left(2n+7\right)\left(7n+1\right)⋮6\)(đpcm)

24 tháng 6 2018

......................?

mik ko biết

mong bn thông cảm 

nha ................