(Help me, mai mình phải đi học rồi )
Cho tam giác ABC cân tại A có Â=108°,gọi O là điểm nằm trên tia phân giác của góc C, sao cho góc CBO=12°.Vẽ tam giác đều BOM (M và A nằm cùng một nửa mặt phẳng OB )
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì\(\Delta ABC\)cân tại A nên \(\widehat{B}=\widehat{C}\)(t/c)
=> \(\widehat{B}=\widehat{C}\)=50o
=> \(\widehat{A}\)=80o
Ta lại có : \(\widehat{ABK}+\widehat{KBC}=\widehat{ABC}\)
<=> \(\widehat{ABK}=50^{o^{ }^{ }}-10^o=40^o\)
Xét \(\Delta ABK\)có
\(\widehat{A}+\widehat{ABK}+\widehat{AKB}=180^o\)
=> \(\widehat{AKB}=180^0-\left(40^0+80^o\right)=40^o\)
=>\(\widehat{ABK}=\widehat{AKB}\)=> \(\Delta ABK\)cân (đpcm)
a, Vì tam giác ABC cân tại A ,mà góc A =100 độ => góc B=góc C= (180 độ -góc A) : 2 = (180 độ - 100 độ ) : 2 = 80độ : 2 = 40 độ
=>Góc ACM = 40độ -20 độ = 20độ , Góc ABM = 40độ - 10 độ =30độ
Vì CE=CB (gt) => tam giác ECB cân tại C =>Góc CBE = góc CEB = (180độ-góc ECB):2 = ( 180độ - 40độ) :2 = 140độ:2 = 70 độ
Mà góc EBM +góc MBC = góc EBC => Góc EBM + 10 độ = 70 độ => gócEBM = 70độ -10độ=60độ (1)
Xét tam giác EMC và tam giác BMC có : Cạnh MC chung , Góc ECM= góc BCM , EC = BC(gt)
=> tam giác EMC = tam giác BMC => Góc CEM = góc CBM = 10độ
Lại có : góc BEM + góc MEC = góc BEC => góc BEM + 10 độ = 70 độ => góc BEM = 70 độ - 10 độ = 60độ (2)
Từ (1) và (2) suy ra tam giác BEM đều
bạn tự vẽ hình nhé :)
Ta có : \(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)
=> B+C=180-60=120
=> 1/2B+1/2C=1/2.120=60
=> IBC+ICB=60
Ta lại có:
\(\widehat{IBC}+\widehat{ICB}+\widehat{BIC}=180^0\)
=> BIC=120
Vậy BIC=120
( bạn nhớ thêm các kí hiệu nhé )
Tự vẽ hình nha:
a) Theo định lý tổng 3 góc trong 1 \(\Delta\)ta có
\(\Delta\)ABC có :\(\widehat{CAB}+\widehat{ABC}+\widehat{ACB}\)= 1800
hay 60* + \(\widehat{ABC}+\widehat{ACB}\)=1800
\(\Rightarrow\)\(\widehat{ABC}+\widehat{ACB}\)=1800 - 600 =1200
Vì CE và BD là tia phân giác của \(\widehat{ABC}\)và \(\widehat{ACB}\)
\(\Rightarrow\)\(\widehat{DBC}+\widehat{ECB}\)= \(\frac{120^0}{2}\)=600
Theo định lý tổng 3 góc trong 1 \(\Delta\)ta có
\(\Delta CIB\)có : \(\widehat{ICB}+\widehat{IBC}+\widehat{BIC}\)=1800
hay 600 + \(\widehat{BIC}\)=1800
\(\Rightarrow\)\(\widehat{BIC}\)=1800 - 600 = 1200