K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 7 2016

dựng tia Bx cắt cạnh AC tại D sao cho góc CBx = 20o 
có gócBCD = 80o => góc BDC = 180o-20o-80o = 80o = góc BCD 
=> tgiác BCD cân (tại B) ; gọi H là hình chiếu của A trên Bx 
có góc ABH = 80o - 20o = 60o => HAB là nửa tgiác đều 
=> BH = AB/2 = b/2 ; AH^2 = 3b^2/4 
BD = BC = a => DH = BH-BD = b/2 - a 
hai tgiác cân BCD và ABC đồng dạng => CD/BC = BC/AB 
=> CD = BC^2/AB = a^2/b 
=> AD = AC - CD = b - a^2/b 

Cho tgiác vuông HAD ta có: AD^2 = AH^2 + DH^2 
Thay số từ các tính toán trên: 
(b - a^2/b)^2 = 3b^2/4 + (b/2 - a)^2 
<=> b^2 + a^4/b^2 - 2a^2 = 3b^2/4 + b^2/4 + a^2 - ab 
<=> a^4/b^2 = 3a^2 - ab 
<=> a^3/b^2 = 3a - b 
<=> a^3 = 3a.b^2 - b^3 
<=> a^3 + b^3 = 3a.b^2 đpcm 

6 tháng 2 2020

khó hiểu quá

6 tháng 2 2020

Tui nghĩ đề bị thiếu rồi. Phải là \(\Delta ABC\)có \(AB=AC\) mới đúng.

A B C D H

Trên nửa m.phẳng bờ \(BC\)chứ \(A\) vẽ tia \(Bx\)sao cho \(\widehat{CBx}=20^0\)

Gọi \(D\)là giao điểm của \(Bx\)và \(AC\)\(H\)là hình chiếu của \(A\)trên \(Bx\)

Theo đề ta có: \(AB=AC\Rightarrow\Delta ABC\)cân tại \(A\) và \(\widehat{A}=20^0\Rightarrow\widehat{ABC}=\widehat{ACB}=80^0\)

Lại có: \(\widehat{ABH}+\widehat{HBC}=\widehat{ABC}=80^0\)

Và: \(\widehat{CBx}=20^0\Rightarrow\widehat{ABH}=60^0\Rightarrow BH=\frac{b}{2};AH=\frac{\sqrt{3}b}{2}\)

\(\Rightarrow\Delta CBD\)cân tại \(B\Rightarrow BD=BC=a\)

Lại có: \(\Delta CBD~\Delta CAB\left(g-g\right)\Rightarrow\frac{BD}{AB}=\frac{CD}{BC}\Rightarrow CD=\frac{a^2}{b}\)

Ta có: \(AD=AC-CD=b-\frac{a^2}{b};DH=BH-BD=\frac{b}{2}-a\)

Áp dụng định lí Pitago trong \(\Delta ADH\)vuông tại \(H\) có:

\(\Rightarrow AD^2=AH^2+DH^2\)

Vì vậy: \(\left(b-\frac{a^2}{b}\right)^2=\left(\frac{\sqrt{3}b}{2}\right)^2+\left(\frac{b}{2}-a\right)^2\)

\(\Leftrightarrow b^2-2a^2+\frac{a^4}{b^2}=\frac{3b^2}{4}+\frac{b^2}{4}-ab+a^2\)

\(\Leftrightarrow b^2-2a^2+\frac{a^4}{b^2}=b^2-ab+a^2\)

\(\Leftrightarrow\frac{a^4}{b^2}+ab=3a^2\)

\(\Leftrightarrow a^3+b^3=3ab^2\left(đpcm\right)\)

6 tháng 2 2020

ồ xin lỗi, đánh thiếu đề

THANKS!

10 tháng 5 2016

Bài 1:

a) Xét 2 tam giác vuông BAH và tg vuông DAH, có:

 AH là cạnh chung

 HB = HC

\(\Rightarrow\Delta BAH=\Delta DAH\) (2 cạnh góc vuông)